估计多项式根大小的一个综合摄动定理

Q1 Mathematics
M. Pakdemirli, Gözde Sari
{"title":"估计多项式根大小的一个综合摄动定理","authors":"M. Pakdemirli, Gözde Sari","doi":"10.1112/S1461157012001192","DOIUrl":null,"url":null,"abstract":"A comprehensive new perturbation theorem is posed and proven to estimate the magnitudes of roots of polynomials. The theorem successfully determines the magnitudes of roots for arbitrary degree of polynomial equations with no restrictions on the coefficients. In the previous papers ‘Pakdemirli and Elmas, Appl. Math. Comput. 216 (2010) 1645–1651’ and ‘Pakdemirli and Yurtsever, Appl. Math. Comput. 188 (2007) 2025–2028’, the given theorems were valid only for some restricted coefficients. The given theorem in this work is a generalization and unification of the past theorems and valid for arbitrary coefficients. Numerical applications of the theorem are presented as examples. It is shown that the theorem produces good estimates for the magnitudes of roots of polynomial equations of arbitrary order and unrestricted coefficients.","PeriodicalId":54381,"journal":{"name":"Lms Journal of Computation and Mathematics","volume":"16 1","pages":"1-8"},"PeriodicalIF":0.0000,"publicationDate":"2013-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"A comprehensive perturbation theorem for estimating magnitudes of roots of polynomials\",\"authors\":\"M. Pakdemirli, Gözde Sari\",\"doi\":\"10.1112/S1461157012001192\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A comprehensive new perturbation theorem is posed and proven to estimate the magnitudes of roots of polynomials. The theorem successfully determines the magnitudes of roots for arbitrary degree of polynomial equations with no restrictions on the coefficients. In the previous papers ‘Pakdemirli and Elmas, Appl. Math. Comput. 216 (2010) 1645–1651’ and ‘Pakdemirli and Yurtsever, Appl. Math. Comput. 188 (2007) 2025–2028’, the given theorems were valid only for some restricted coefficients. The given theorem in this work is a generalization and unification of the past theorems and valid for arbitrary coefficients. Numerical applications of the theorem are presented as examples. It is shown that the theorem produces good estimates for the magnitudes of roots of polynomial equations of arbitrary order and unrestricted coefficients.\",\"PeriodicalId\":54381,\"journal\":{\"name\":\"Lms Journal of Computation and Mathematics\",\"volume\":\"16 1\",\"pages\":\"1-8\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Lms Journal of Computation and Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1112/S1461157012001192\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Lms Journal of Computation and Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1112/S1461157012001192","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 2

摘要

提出并证明了一个新的综合摄动定理,用于估计多项式根的大小。该定理成功地确定了任意次多项式方程的根的大小,而没有对系数的限制。在Pakdemirli和Elmas之前的论文中,apple。数学。计算机。216(2010)1645-1651”和“Pakdemirli和Yurtsever,苹果公司。”数学。计算。188(2007)2025-2028 ',给出的定理仅对某些限制系数有效。本文给出的定理是以往定理的推广和统一,对任意系数都有效。给出了该定理的数值应用实例。证明了该定理对任意阶和系数不受限制的多项式方程的根的大小有很好的估计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A comprehensive perturbation theorem for estimating magnitudes of roots of polynomials
A comprehensive new perturbation theorem is posed and proven to estimate the magnitudes of roots of polynomials. The theorem successfully determines the magnitudes of roots for arbitrary degree of polynomial equations with no restrictions on the coefficients. In the previous papers ‘Pakdemirli and Elmas, Appl. Math. Comput. 216 (2010) 1645–1651’ and ‘Pakdemirli and Yurtsever, Appl. Math. Comput. 188 (2007) 2025–2028’, the given theorems were valid only for some restricted coefficients. The given theorem in this work is a generalization and unification of the past theorems and valid for arbitrary coefficients. Numerical applications of the theorem are presented as examples. It is shown that the theorem produces good estimates for the magnitudes of roots of polynomial equations of arbitrary order and unrestricted coefficients.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Lms Journal of Computation and Mathematics
Lms Journal of Computation and Mathematics MATHEMATICS, APPLIED-MATHEMATICS
CiteScore
2.60
自引率
0.00%
发文量
0
审稿时长
>12 weeks
期刊介绍: LMS Journal of Computation and Mathematics has ceased publication. Its final volume is Volume 20 (2017). LMS Journal of Computation and Mathematics is an electronic-only resource that comprises papers on the computational aspects of mathematics, mathematical aspects of computation, and papers in mathematics which benefit from having been published electronically. The journal is refereed to the same high standard as the established LMS journals, and carries a commitment from the LMS to keep it archived into the indefinite future. Access is free until further notice.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信