应用于稳定和不稳定随机扰动试验系统的θ -Maruyama方法的几乎肯定渐近稳定性分析

Q1 Mathematics
G. Berkolaiko, E. Buckwar, C. Kelly, A. Rodkina
{"title":"应用于稳定和不稳定随机扰动试验系统的θ -Maruyama方法的几乎肯定渐近稳定性分析","authors":"G. Berkolaiko, E. Buckwar, C. Kelly, A. Rodkina","doi":"10.1112/S1461157012000010","DOIUrl":null,"url":null,"abstract":"In the original article [LMS J. Comput. Math. 15 (2012) 71–83], the authors use a discrete form of the Ito formula, developed by Appleby, Berkolaiko and Rodkina [Stochastics 81 (2009) no. 2, 99–127], to show that the almost sure asymptotic stability of a particular two-dimensional test system is preserved when the discretisation step size is small. In this Corrigendum, we identify an implicit assumption in the original proof of the discrete Ito formula that, left unaddressed, would preclude its application to the test system of interest. We resolve this problem by reproving the relevant part of the discrete Ito formula in such a way that confirms its applicability to our test equation. Thus, we reaffirm the main results and conclusions of the original article.","PeriodicalId":54381,"journal":{"name":"Lms Journal of Computation and Mathematics","volume":"15 1","pages":"71-83"},"PeriodicalIF":0.0000,"publicationDate":"2012-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1112/S1461157012000010","citationCount":"19","resultStr":"{\"title\":\"Almost sure asymptotic stability analysis of the θ -Maruyama method applied to a test system with stabilising and destabilising stochastic perturbations\",\"authors\":\"G. Berkolaiko, E. Buckwar, C. Kelly, A. Rodkina\",\"doi\":\"10.1112/S1461157012000010\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the original article [LMS J. Comput. Math. 15 (2012) 71–83], the authors use a discrete form of the Ito formula, developed by Appleby, Berkolaiko and Rodkina [Stochastics 81 (2009) no. 2, 99–127], to show that the almost sure asymptotic stability of a particular two-dimensional test system is preserved when the discretisation step size is small. In this Corrigendum, we identify an implicit assumption in the original proof of the discrete Ito formula that, left unaddressed, would preclude its application to the test system of interest. We resolve this problem by reproving the relevant part of the discrete Ito formula in such a way that confirms its applicability to our test equation. Thus, we reaffirm the main results and conclusions of the original article.\",\"PeriodicalId\":54381,\"journal\":{\"name\":\"Lms Journal of Computation and Mathematics\",\"volume\":\"15 1\",\"pages\":\"71-83\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1112/S1461157012000010\",\"citationCount\":\"19\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Lms Journal of Computation and Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1112/S1461157012000010\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Lms Journal of Computation and Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1112/S1461157012000010","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 19

摘要

在原文中[LMS J. Comput]。数学。15(2012)71-83],作者使用了离散形式的伊托公式,由Appleby, Berkolaiko和Rodkina[随机统计81 (2009)no。[2,99 - 127],以证明当离散步长较小时,特定二维测试系统的几乎肯定渐近稳定性是保持的。在本勘误中,我们在离散伊藤公式的原始证明中确定了一个隐含的假设,如果不加以解决,将妨碍其应用于感兴趣的测试系统。我们通过重新证明离散伊藤公式的相关部分来解决这个问题,从而证实了它对我们的测试方程的适用性。因此,我们重申了原文章的主要结果和结论。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Almost sure asymptotic stability analysis of the θ -Maruyama method applied to a test system with stabilising and destabilising stochastic perturbations
In the original article [LMS J. Comput. Math. 15 (2012) 71–83], the authors use a discrete form of the Ito formula, developed by Appleby, Berkolaiko and Rodkina [Stochastics 81 (2009) no. 2, 99–127], to show that the almost sure asymptotic stability of a particular two-dimensional test system is preserved when the discretisation step size is small. In this Corrigendum, we identify an implicit assumption in the original proof of the discrete Ito formula that, left unaddressed, would preclude its application to the test system of interest. We resolve this problem by reproving the relevant part of the discrete Ito formula in such a way that confirms its applicability to our test equation. Thus, we reaffirm the main results and conclusions of the original article.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Lms Journal of Computation and Mathematics
Lms Journal of Computation and Mathematics MATHEMATICS, APPLIED-MATHEMATICS
CiteScore
2.60
自引率
0.00%
发文量
0
审稿时长
>12 weeks
期刊介绍: LMS Journal of Computation and Mathematics has ceased publication. Its final volume is Volume 20 (2017). LMS Journal of Computation and Mathematics is an electronic-only resource that comprises papers on the computational aspects of mathematics, mathematical aspects of computation, and papers in mathematics which benefit from having been published electronically. The journal is refereed to the same high standard as the established LMS journals, and carries a commitment from the LMS to keep it archived into the indefinite future. Access is free until further notice.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信