TS-RTPM-Net:数据驱动张量素描,实现高效 CP 分解

IF 7.5 3区 计算机科学 Q1 COMPUTER SCIENCE, INFORMATION SYSTEMS
Xingyu Cao;Xiangtao Zhang;Ce Zhu;Jiani Liu;Yipeng Liu
{"title":"TS-RTPM-Net:数据驱动张量素描,实现高效 CP 分解","authors":"Xingyu Cao;Xiangtao Zhang;Ce Zhu;Jiani Liu;Yipeng Liu","doi":"10.1109/TBDATA.2023.3310254","DOIUrl":null,"url":null,"abstract":"Tensor decomposition is widely used in feature extraction, data analysis, and other fields. As a means of tensor decomposition, the robust tensor power method based on tensor sketch (TS-RTPM) can quickly mine the potential features of tensor, but in some cases, its approximation performance is limited. In this paper, we propose a data-driven framework called TS-RTPM-Net, which improves the estimation accuracy of TS-RTPM by jointly training the TS value matrices with the RTPM initial matrices. It also uses two greedy initialization algorithms to optimize the TS location matrices. In addition, TS-RTPM-Net accelerates TS-RTPM by using fast power iteration modules. Comparative experiments on real-world datasets verify that TS-RTPM-Net outperforms TS-RTPM in terms of estimation accuracy, running speed, and memory consumption.","PeriodicalId":13106,"journal":{"name":"IEEE Transactions on Big Data","volume":"10 1","pages":"1-11"},"PeriodicalIF":7.5000,"publicationDate":"2023-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"TS-RTPM-Net: Data-Driven Tensor Sketching for Efficient CP Decomposition\",\"authors\":\"Xingyu Cao;Xiangtao Zhang;Ce Zhu;Jiani Liu;Yipeng Liu\",\"doi\":\"10.1109/TBDATA.2023.3310254\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Tensor decomposition is widely used in feature extraction, data analysis, and other fields. As a means of tensor decomposition, the robust tensor power method based on tensor sketch (TS-RTPM) can quickly mine the potential features of tensor, but in some cases, its approximation performance is limited. In this paper, we propose a data-driven framework called TS-RTPM-Net, which improves the estimation accuracy of TS-RTPM by jointly training the TS value matrices with the RTPM initial matrices. It also uses two greedy initialization algorithms to optimize the TS location matrices. In addition, TS-RTPM-Net accelerates TS-RTPM by using fast power iteration modules. Comparative experiments on real-world datasets verify that TS-RTPM-Net outperforms TS-RTPM in terms of estimation accuracy, running speed, and memory consumption.\",\"PeriodicalId\":13106,\"journal\":{\"name\":\"IEEE Transactions on Big Data\",\"volume\":\"10 1\",\"pages\":\"1-11\"},\"PeriodicalIF\":7.5000,\"publicationDate\":\"2023-08-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Big Data\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10234702/\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Big Data","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10234702/","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

张量分解被广泛应用于特征提取、数据分析等领域。作为张量分解的一种手段,基于张量素描的鲁棒张量幂方法(TS-RTPM)能快速挖掘张量的潜在特征,但在某些情况下,其近似性能有限。本文提出了一种名为 TS-RTPM-Net 的数据驱动框架,它通过联合训练 TS 值矩阵和 RTPM 初始矩阵来提高 TS-RTPM 的估计精度。它还使用两种贪婪初始化算法来优化 TS 位置矩阵。此外,TS-RTPM-Net 还通过使用快速幂迭代模块来加速 TS-RTPM。实际数据集的对比实验验证了 TS-RTPM-Net 在估计精度、运行速度和内存消耗方面都优于 TS-RTPM。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
TS-RTPM-Net: Data-Driven Tensor Sketching for Efficient CP Decomposition
Tensor decomposition is widely used in feature extraction, data analysis, and other fields. As a means of tensor decomposition, the robust tensor power method based on tensor sketch (TS-RTPM) can quickly mine the potential features of tensor, but in some cases, its approximation performance is limited. In this paper, we propose a data-driven framework called TS-RTPM-Net, which improves the estimation accuracy of TS-RTPM by jointly training the TS value matrices with the RTPM initial matrices. It also uses two greedy initialization algorithms to optimize the TS location matrices. In addition, TS-RTPM-Net accelerates TS-RTPM by using fast power iteration modules. Comparative experiments on real-world datasets verify that TS-RTPM-Net outperforms TS-RTPM in terms of estimation accuracy, running speed, and memory consumption.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
11.80
自引率
2.80%
发文量
114
期刊介绍: The IEEE Transactions on Big Data publishes peer-reviewed articles focusing on big data. These articles present innovative research ideas and application results across disciplines, including novel theories, algorithms, and applications. Research areas cover a wide range, such as big data analytics, visualization, curation, management, semantics, infrastructure, standards, performance analysis, intelligence extraction, scientific discovery, security, privacy, and legal issues specific to big data. The journal also prioritizes applications of big data in fields generating massive datasets.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信