基于谱聚类的瞬态噪声下的语音活动检测

S. Mousazadeh, I. Cohen
{"title":"基于谱聚类的瞬态噪声下的语音活动检测","authors":"S. Mousazadeh, I. Cohen","doi":"10.1109/TASL.2013.2248717","DOIUrl":null,"url":null,"abstract":"Voice activity detection has attracted significant research efforts in the last two decades. Despite much progress in designing voice activity detectors, voice activity detection (VAD) in presence of transient noise is a challenging problem. In this paper, we develop a novel VAD algorithm based on spectral clustering methods. We propose a VAD technique which is a supervised learning algorithm. This algorithm divides the input signal into two separate clusters (i.e., speech presence and speech absence frames). We use labeled data in order to adjust the parameters of the kernel used in spectral clustering methods for computing the similarity matrix. The parameters obtained in the training stage together with the eigenvectors of the normalized Laplacian of the similarity matrix and Gaussian mixture model (GMM) are utilized to compute the likelihood ratio needed for voice activity detection. Simulation results demonstrate the advantage of the proposed method compared to conventional statistical model-based VAD algorithms in presence of transient noise.","PeriodicalId":55014,"journal":{"name":"IEEE Transactions on Audio Speech and Language Processing","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2013-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1109/TASL.2013.2248717","citationCount":"47","resultStr":"{\"title\":\"Voice Activity Detection in Presence of Transient Noise Using Spectral Clustering\",\"authors\":\"S. Mousazadeh, I. Cohen\",\"doi\":\"10.1109/TASL.2013.2248717\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Voice activity detection has attracted significant research efforts in the last two decades. Despite much progress in designing voice activity detectors, voice activity detection (VAD) in presence of transient noise is a challenging problem. In this paper, we develop a novel VAD algorithm based on spectral clustering methods. We propose a VAD technique which is a supervised learning algorithm. This algorithm divides the input signal into two separate clusters (i.e., speech presence and speech absence frames). We use labeled data in order to adjust the parameters of the kernel used in spectral clustering methods for computing the similarity matrix. The parameters obtained in the training stage together with the eigenvectors of the normalized Laplacian of the similarity matrix and Gaussian mixture model (GMM) are utilized to compute the likelihood ratio needed for voice activity detection. Simulation results demonstrate the advantage of the proposed method compared to conventional statistical model-based VAD algorithms in presence of transient noise.\",\"PeriodicalId\":55014,\"journal\":{\"name\":\"IEEE Transactions on Audio Speech and Language Processing\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1109/TASL.2013.2248717\",\"citationCount\":\"47\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Audio Speech and Language Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/TASL.2013.2248717\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Audio Speech and Language Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TASL.2013.2248717","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 47

摘要

在过去的二十年里,语音活动检测吸引了大量的研究工作。尽管语音活动检测器的设计取得了很大的进展,但存在瞬态噪声的语音活动检测(VAD)是一个具有挑战性的问题。本文提出了一种基于谱聚类的VAD算法。我们提出了一种VAD技术,它是一种监督学习算法。该算法将输入信号分成两个独立的簇(即语音存在帧和语音缺失帧)。我们使用标记数据来调整谱聚类方法中用于计算相似矩阵的核的参数。利用训练阶段获得的参数、相似矩阵归一化拉普拉斯特征向量和高斯混合模型(GMM)计算语音活动检测所需的似然比。仿真结果表明,在存在瞬态噪声的情况下,与传统的基于统计模型的VAD算法相比,该方法具有明显的优越性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Voice Activity Detection in Presence of Transient Noise Using Spectral Clustering
Voice activity detection has attracted significant research efforts in the last two decades. Despite much progress in designing voice activity detectors, voice activity detection (VAD) in presence of transient noise is a challenging problem. In this paper, we develop a novel VAD algorithm based on spectral clustering methods. We propose a VAD technique which is a supervised learning algorithm. This algorithm divides the input signal into two separate clusters (i.e., speech presence and speech absence frames). We use labeled data in order to adjust the parameters of the kernel used in spectral clustering methods for computing the similarity matrix. The parameters obtained in the training stage together with the eigenvectors of the normalized Laplacian of the similarity matrix and Gaussian mixture model (GMM) are utilized to compute the likelihood ratio needed for voice activity detection. Simulation results demonstrate the advantage of the proposed method compared to conventional statistical model-based VAD algorithms in presence of transient noise.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Transactions on Audio Speech and Language Processing
IEEE Transactions on Audio Speech and Language Processing 工程技术-工程:电子与电气
自引率
0.00%
发文量
0
审稿时长
24.0 months
期刊介绍: The IEEE Transactions on Audio, Speech and Language Processing covers the sciences, technologies and applications relating to the analysis, coding, enhancement, recognition and synthesis of audio, music, speech and language. In particular, audio processing also covers auditory modeling, acoustic modeling and source separation. Speech processing also covers speech production and perception, adaptation, lexical modeling and speaker recognition. Language processing also covers spoken language understanding, translation, summarization, mining, general language modeling, as well as spoken dialog systems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信