{"title":"用于回波抵消的通用卡尔曼滤波器的研究","authors":"C. Paleologu, J. Benesty, S. Ciochină","doi":"10.1109/TASL.2013.2245654","DOIUrl":null,"url":null,"abstract":"The Kalman filter is a very interesting signal processing tool, which is widely used in many practical applications. In this paper, we study the Kalman filter in the context of echo cancellation. The contribution of this work is threefold. First, we derive a different form of the Kalman filter by considering, at each iteration, a block of time samples instead of one time sample as it is the case in the conventional approach. Second, we show how this general Kalman filter (GKF) is connected with some of the most popular adaptive filters for echo cancellation, i.e., the normalized least-mean-square (NLMS) algorithm, the affine projection algorithm (APA) and its proportionate version (PAPA). Third, a simplified Kalman filter is developed in order to reduce the computational load of the GKF; this algorithm behaves like a variable step-size adaptive filter. Simulation results indicate the good performance of the proposed algorithms, which can be attractive choices for echo cancellation.","PeriodicalId":55014,"journal":{"name":"IEEE Transactions on Audio Speech and Language Processing","volume":"21 1","pages":"1539-1549"},"PeriodicalIF":0.0000,"publicationDate":"2013-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1109/TASL.2013.2245654","citationCount":"92","resultStr":"{\"title\":\"Study of the General Kalman Filter for Echo Cancellation\",\"authors\":\"C. Paleologu, J. Benesty, S. Ciochină\",\"doi\":\"10.1109/TASL.2013.2245654\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The Kalman filter is a very interesting signal processing tool, which is widely used in many practical applications. In this paper, we study the Kalman filter in the context of echo cancellation. The contribution of this work is threefold. First, we derive a different form of the Kalman filter by considering, at each iteration, a block of time samples instead of one time sample as it is the case in the conventional approach. Second, we show how this general Kalman filter (GKF) is connected with some of the most popular adaptive filters for echo cancellation, i.e., the normalized least-mean-square (NLMS) algorithm, the affine projection algorithm (APA) and its proportionate version (PAPA). Third, a simplified Kalman filter is developed in order to reduce the computational load of the GKF; this algorithm behaves like a variable step-size adaptive filter. Simulation results indicate the good performance of the proposed algorithms, which can be attractive choices for echo cancellation.\",\"PeriodicalId\":55014,\"journal\":{\"name\":\"IEEE Transactions on Audio Speech and Language Processing\",\"volume\":\"21 1\",\"pages\":\"1539-1549\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1109/TASL.2013.2245654\",\"citationCount\":\"92\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Audio Speech and Language Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/TASL.2013.2245654\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Audio Speech and Language Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TASL.2013.2245654","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Study of the General Kalman Filter for Echo Cancellation
The Kalman filter is a very interesting signal processing tool, which is widely used in many practical applications. In this paper, we study the Kalman filter in the context of echo cancellation. The contribution of this work is threefold. First, we derive a different form of the Kalman filter by considering, at each iteration, a block of time samples instead of one time sample as it is the case in the conventional approach. Second, we show how this general Kalman filter (GKF) is connected with some of the most popular adaptive filters for echo cancellation, i.e., the normalized least-mean-square (NLMS) algorithm, the affine projection algorithm (APA) and its proportionate version (PAPA). Third, a simplified Kalman filter is developed in order to reduce the computational load of the GKF; this algorithm behaves like a variable step-size adaptive filter. Simulation results indicate the good performance of the proposed algorithms, which can be attractive choices for echo cancellation.
期刊介绍:
The IEEE Transactions on Audio, Speech and Language Processing covers the sciences, technologies and applications relating to the analysis, coding, enhancement, recognition and synthesis of audio, music, speech and language. In particular, audio processing also covers auditory modeling, acoustic modeling and source separation. Speech processing also covers speech production and perception, adaptation, lexical modeling and speaker recognition. Language processing also covers spoken language understanding, translation, summarization, mining, general language modeling, as well as spoken dialog systems.