基于两层稀疏度模型的混合语音盲分离压缩感知方法

Guangzhao Bao, Z. Ye, Xu Xu, Yingyue Zhou
{"title":"基于两层稀疏度模型的混合语音盲分离压缩感知方法","authors":"Guangzhao Bao, Z. Ye, Xu Xu, Yingyue Zhou","doi":"10.1109/TASL.2012.2234110","DOIUrl":null,"url":null,"abstract":"This paper discusses underdetermined blind source separation (BSS) using a compressed sensing (CS) approach, which contains two stages. In the first stage we exploit a modified K-means method to estimate the unknown mixing matrix. The second stage is to separate the sources from the mixed signals using the estimated mixing matrix from the first stage. In the second stage a two-layer sparsity model is used. The two-layer sparsity model assumes that the low frequency components of speech signals are sparse on K-SVD dictionary and the high frequency components are sparse on discrete cosine transformation (DCT) dictionary. This model, taking advantage of two dictionaries, can produce effective separation performance even if the sources are not sparse in time-frequency (TF) domain.","PeriodicalId":55014,"journal":{"name":"IEEE Transactions on Audio Speech and Language Processing","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2013-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1109/TASL.2012.2234110","citationCount":"43","resultStr":"{\"title\":\"A Compressed Sensing Approach to Blind Separation of Speech Mixture Based on a Two-Layer Sparsity Model\",\"authors\":\"Guangzhao Bao, Z. Ye, Xu Xu, Yingyue Zhou\",\"doi\":\"10.1109/TASL.2012.2234110\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper discusses underdetermined blind source separation (BSS) using a compressed sensing (CS) approach, which contains two stages. In the first stage we exploit a modified K-means method to estimate the unknown mixing matrix. The second stage is to separate the sources from the mixed signals using the estimated mixing matrix from the first stage. In the second stage a two-layer sparsity model is used. The two-layer sparsity model assumes that the low frequency components of speech signals are sparse on K-SVD dictionary and the high frequency components are sparse on discrete cosine transformation (DCT) dictionary. This model, taking advantage of two dictionaries, can produce effective separation performance even if the sources are not sparse in time-frequency (TF) domain.\",\"PeriodicalId\":55014,\"journal\":{\"name\":\"IEEE Transactions on Audio Speech and Language Processing\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1109/TASL.2012.2234110\",\"citationCount\":\"43\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Audio Speech and Language Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/TASL.2012.2234110\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Audio Speech and Language Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TASL.2012.2234110","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 43

摘要

本文讨论了一种基于压缩感知的欠定盲源分离(BSS)方法,该方法包括两个阶段。在第一阶段,我们利用改进的K-means方法来估计未知混合矩阵。第二阶段是利用第一阶段估计的混合矩阵从混合信号中分离源信号。第二阶段采用两层稀疏度模型。两层稀疏性模型假设语音信号的低频分量在K-SVD字典上是稀疏的,高频分量在离散余弦变换(DCT)字典上是稀疏的。该模型利用两个字典的优势,即使源在时频域中不稀疏,也能产生有效的分离性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Compressed Sensing Approach to Blind Separation of Speech Mixture Based on a Two-Layer Sparsity Model
This paper discusses underdetermined blind source separation (BSS) using a compressed sensing (CS) approach, which contains two stages. In the first stage we exploit a modified K-means method to estimate the unknown mixing matrix. The second stage is to separate the sources from the mixed signals using the estimated mixing matrix from the first stage. In the second stage a two-layer sparsity model is used. The two-layer sparsity model assumes that the low frequency components of speech signals are sparse on K-SVD dictionary and the high frequency components are sparse on discrete cosine transformation (DCT) dictionary. This model, taking advantage of two dictionaries, can produce effective separation performance even if the sources are not sparse in time-frequency (TF) domain.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Transactions on Audio Speech and Language Processing
IEEE Transactions on Audio Speech and Language Processing 工程技术-工程:电子与电气
自引率
0.00%
发文量
0
审稿时长
24.0 months
期刊介绍: The IEEE Transactions on Audio, Speech and Language Processing covers the sciences, technologies and applications relating to the analysis, coding, enhancement, recognition and synthesis of audio, music, speech and language. In particular, audio processing also covers auditory modeling, acoustic modeling and source separation. Speech processing also covers speech production and perception, adaptation, lexical modeling and speaker recognition. Language processing also covers spoken language understanding, translation, summarization, mining, general language modeling, as well as spoken dialog systems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信