一种基于脑电图的快速人脸搜索迭代方法:基于脑机接口的精细检索

Yiwen Wang, Lei Jiang, Yun Wang, Bangyu Cai, Yueming Wang, Weidong Chen, S. Zhang, Xiaoxiang Zheng
{"title":"一种基于脑电图的快速人脸搜索迭代方法:基于脑机接口的精细检索","authors":"Yiwen Wang, Lei Jiang, Yun Wang, Bangyu Cai, Yueming Wang, Weidong Chen, S. Zhang, Xiaoxiang Zheng","doi":"10.1109/TAMD.2015.2446499","DOIUrl":null,"url":null,"abstract":"Recent face recognition techniques have achieved remarkable successes in fast face retrieval on huge image datasets. But the performance is still limited when large illumination, pose, and facial expression variations are presented. In contrast, the human brain has powerful cognitive capability to recognize faces and demonstrates robustness across viewpoints, lighting conditions, even in the presence of partial occlusion. This paper proposes a closed-loop face retrieval system that combines the state-of-the-art face recognition method with the powerful cognitive function of the human brain illustrated in electroencephalography signals. The system starts with a random face image and outputs the ranking of all of the images in the database according to their similarity to the target individual. At each iteration, the single trial event related potentials (ERP) detector scores the user's interest in rapid serial visual presentation paradigm, where the presented images are selected from the computer face recognition module. When the system converges, the ERP detector further refines the lower ranking to achieve better performance. In total, 10 subjects participated in the experiment, exploring a database containing 1,854 images of 46 celebrities. Our approach outperforms existing methods with better average precision, indicating human cognitive ability complements computer face recognition and contributes to better face retrieval.","PeriodicalId":49193,"journal":{"name":"IEEE Transactions on Autonomous Mental Development","volume":"7 1","pages":"211-222"},"PeriodicalIF":0.0000,"publicationDate":"2015-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1109/TAMD.2015.2446499","citationCount":"10","resultStr":"{\"title\":\"An Iterative Approach for EEG-Based Rapid Face Search: A Refined Retrieval by Brain Computer Interfaces\",\"authors\":\"Yiwen Wang, Lei Jiang, Yun Wang, Bangyu Cai, Yueming Wang, Weidong Chen, S. Zhang, Xiaoxiang Zheng\",\"doi\":\"10.1109/TAMD.2015.2446499\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Recent face recognition techniques have achieved remarkable successes in fast face retrieval on huge image datasets. But the performance is still limited when large illumination, pose, and facial expression variations are presented. In contrast, the human brain has powerful cognitive capability to recognize faces and demonstrates robustness across viewpoints, lighting conditions, even in the presence of partial occlusion. This paper proposes a closed-loop face retrieval system that combines the state-of-the-art face recognition method with the powerful cognitive function of the human brain illustrated in electroencephalography signals. The system starts with a random face image and outputs the ranking of all of the images in the database according to their similarity to the target individual. At each iteration, the single trial event related potentials (ERP) detector scores the user's interest in rapid serial visual presentation paradigm, where the presented images are selected from the computer face recognition module. When the system converges, the ERP detector further refines the lower ranking to achieve better performance. In total, 10 subjects participated in the experiment, exploring a database containing 1,854 images of 46 celebrities. Our approach outperforms existing methods with better average precision, indicating human cognitive ability complements computer face recognition and contributes to better face retrieval.\",\"PeriodicalId\":49193,\"journal\":{\"name\":\"IEEE Transactions on Autonomous Mental Development\",\"volume\":\"7 1\",\"pages\":\"211-222\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-06-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1109/TAMD.2015.2446499\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Autonomous Mental Development\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/TAMD.2015.2446499\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Autonomous Mental Development","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TAMD.2015.2446499","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

摘要

近年来的人脸识别技术在海量图像数据集上的快速人脸检索方面取得了显著的成功。但是,当出现大的照明、姿势和面部表情变化时,性能仍然受到限制。相比之下,人类大脑具有强大的识别人脸的认知能力,并且即使在部分遮挡的情况下,也能在视点、光照条件下表现出鲁棒性。本文提出了一种闭环人脸检索系统,该系统将最先进的人脸识别方法与脑电图信号所显示的人类大脑强大的认知功能相结合。系统从一张随机的人脸图像开始,并根据与目标个体的相似度输出数据库中所有图像的排名。在每次迭代中,单试验事件相关电位(ERP)检测器对用户在快速串行视觉呈现范式中的兴趣进行评分,其中呈现的图像是从计算机人脸识别模块中选择的。当系统收敛时,ERP检测器进一步细化较低的排序以获得更好的性能。总共有10名受试者参与了这项实验,他们在一个包含46位名人的1854张照片的数据库中进行研究。我们的方法在平均精度上优于现有的方法,表明人类的认知能力是对计算机人脸识别的补充,有助于更好的人脸检索。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An Iterative Approach for EEG-Based Rapid Face Search: A Refined Retrieval by Brain Computer Interfaces
Recent face recognition techniques have achieved remarkable successes in fast face retrieval on huge image datasets. But the performance is still limited when large illumination, pose, and facial expression variations are presented. In contrast, the human brain has powerful cognitive capability to recognize faces and demonstrates robustness across viewpoints, lighting conditions, even in the presence of partial occlusion. This paper proposes a closed-loop face retrieval system that combines the state-of-the-art face recognition method with the powerful cognitive function of the human brain illustrated in electroencephalography signals. The system starts with a random face image and outputs the ranking of all of the images in the database according to their similarity to the target individual. At each iteration, the single trial event related potentials (ERP) detector scores the user's interest in rapid serial visual presentation paradigm, where the presented images are selected from the computer face recognition module. When the system converges, the ERP detector further refines the lower ranking to achieve better performance. In total, 10 subjects participated in the experiment, exploring a database containing 1,854 images of 46 celebrities. Our approach outperforms existing methods with better average precision, indicating human cognitive ability complements computer face recognition and contributes to better face retrieval.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Transactions on Autonomous Mental Development
IEEE Transactions on Autonomous Mental Development COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE-ROBOTICS
自引率
0.00%
发文量
0
审稿时长
3 months
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信