基于鲁棒梯度的脑磁共振图像偏场校正算法

Q. Ling, Zhaohui Li, Qinghua Huang, Xuelong Li
{"title":"基于鲁棒梯度的脑磁共振图像偏场校正算法","authors":"Q. Ling, Zhaohui Li, Qinghua Huang, Xuelong Li","doi":"10.1109/TAMD.2015.2416976","DOIUrl":null,"url":null,"abstract":"We developed a novel algorithm to estimate bias fields from brain magnetic resonance (MR) images using a gradient-based method. The bias field is modeled as a multiplicative and slowly varying surface. We fit the bias field by a low-order polynomial. The polynomial's parameters are directly obtained by minimizing the sum of square errors between the gradients of MR images (both in the x-direction and y-direction) and the partial derivatives of the desired polynomial in the log domain. Compared to the existing retrospective algorithms, our algorithm combines the estimation of the gradient of the bias field and the reintegration of the obtained gradient polynomial together so that it is more robust against noise and can achieve better performance, which are demonstrated through experiments with both real and simulated brain MR images.","PeriodicalId":49193,"journal":{"name":"IEEE Transactions on Autonomous Mental Development","volume":"7 1","pages":"256-264"},"PeriodicalIF":0.0000,"publicationDate":"2015-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1109/TAMD.2015.2416976","citationCount":"6","resultStr":"{\"title\":\"A Robust Gradient-Based Algorithm to Correct Bias Fields of Brain MR Images\",\"authors\":\"Q. Ling, Zhaohui Li, Qinghua Huang, Xuelong Li\",\"doi\":\"10.1109/TAMD.2015.2416976\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We developed a novel algorithm to estimate bias fields from brain magnetic resonance (MR) images using a gradient-based method. The bias field is modeled as a multiplicative and slowly varying surface. We fit the bias field by a low-order polynomial. The polynomial's parameters are directly obtained by minimizing the sum of square errors between the gradients of MR images (both in the x-direction and y-direction) and the partial derivatives of the desired polynomial in the log domain. Compared to the existing retrospective algorithms, our algorithm combines the estimation of the gradient of the bias field and the reintegration of the obtained gradient polynomial together so that it is more robust against noise and can achieve better performance, which are demonstrated through experiments with both real and simulated brain MR images.\",\"PeriodicalId\":49193,\"journal\":{\"name\":\"IEEE Transactions on Autonomous Mental Development\",\"volume\":\"7 1\",\"pages\":\"256-264\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1109/TAMD.2015.2416976\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Autonomous Mental Development\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/TAMD.2015.2416976\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Autonomous Mental Development","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TAMD.2015.2416976","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

本文提出了一种基于梯度的脑磁共振图像偏置场估计算法。偏置场被建模为一个乘法和缓慢变化的曲面。我们用一个低阶多项式拟合偏置场。通过最小化MR图像(x方向和y方向)的梯度与期望多项式在对数域中的偏导数之间的误差平方和,直接获得多项式的参数。与现有的回溯算法相比,我们的算法将偏置场的梯度估计和得到的梯度多项式的重新整合结合在一起,对噪声具有更强的鲁棒性,可以获得更好的性能,并通过真实和模拟的脑MR图像进行了实验。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Robust Gradient-Based Algorithm to Correct Bias Fields of Brain MR Images
We developed a novel algorithm to estimate bias fields from brain magnetic resonance (MR) images using a gradient-based method. The bias field is modeled as a multiplicative and slowly varying surface. We fit the bias field by a low-order polynomial. The polynomial's parameters are directly obtained by minimizing the sum of square errors between the gradients of MR images (both in the x-direction and y-direction) and the partial derivatives of the desired polynomial in the log domain. Compared to the existing retrospective algorithms, our algorithm combines the estimation of the gradient of the bias field and the reintegration of the obtained gradient polynomial together so that it is more robust against noise and can achieve better performance, which are demonstrated through experiments with both real and simulated brain MR images.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Transactions on Autonomous Mental Development
IEEE Transactions on Autonomous Mental Development COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE-ROBOTICS
自引率
0.00%
发文量
0
审稿时长
3 months
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信