Yunzhi Wang, V. Chattaraman, Hyejeong Kim, G. Deshpande
{"title":"基于时空功能MRI特征的机器学习预测购买决策","authors":"Yunzhi Wang, V. Chattaraman, Hyejeong Kim, G. Deshpande","doi":"10.1109/TAMD.2015.2434733","DOIUrl":null,"url":null,"abstract":"Machine learning algorithms allow us to directly predict brain states based on functional magnetic resonance imaging (fMRI) data. In this study, we demonstrate the application of this framework to neuromarketing by predicting purchase decisions from spatio-temporal fMRI data. A sample of 24 subjects were shown product images and asked to make decisions of whether to buy them or not while undergoing fMRI scanning. Eight brain regions which were significantly activated during decision-making were identified using a general linear model. Time series were extracted from these regions and input into a recursive cluster elimination based support vector machine (RCE-SVM) for predicting purchase decisions. This method iteratively eliminates features which are unimportant until only the most discriminative features giving maximum accuracy are obtained. We were able to predict purchase decisions with 71% accuracy, which is higher than previously reported. In addition, we found that the most discriminative features were in signals from medial and superior frontal cortices. Therefore, this approach provides a reliable framework for using fMRI data to predict purchase-related decision-making as well as infer its neural correlates.","PeriodicalId":49193,"journal":{"name":"IEEE Transactions on Autonomous Mental Development","volume":"7 1","pages":"248-255"},"PeriodicalIF":0.0000,"publicationDate":"2015-05-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1109/TAMD.2015.2434733","citationCount":"21","resultStr":"{\"title\":\"Predicting Purchase Decisions Based on Spatio-Temporal Functional MRI Features Using Machine Learning\",\"authors\":\"Yunzhi Wang, V. Chattaraman, Hyejeong Kim, G. Deshpande\",\"doi\":\"10.1109/TAMD.2015.2434733\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Machine learning algorithms allow us to directly predict brain states based on functional magnetic resonance imaging (fMRI) data. In this study, we demonstrate the application of this framework to neuromarketing by predicting purchase decisions from spatio-temporal fMRI data. A sample of 24 subjects were shown product images and asked to make decisions of whether to buy them or not while undergoing fMRI scanning. Eight brain regions which were significantly activated during decision-making were identified using a general linear model. Time series were extracted from these regions and input into a recursive cluster elimination based support vector machine (RCE-SVM) for predicting purchase decisions. This method iteratively eliminates features which are unimportant until only the most discriminative features giving maximum accuracy are obtained. We were able to predict purchase decisions with 71% accuracy, which is higher than previously reported. In addition, we found that the most discriminative features were in signals from medial and superior frontal cortices. Therefore, this approach provides a reliable framework for using fMRI data to predict purchase-related decision-making as well as infer its neural correlates.\",\"PeriodicalId\":49193,\"journal\":{\"name\":\"IEEE Transactions on Autonomous Mental Development\",\"volume\":\"7 1\",\"pages\":\"248-255\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-05-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1109/TAMD.2015.2434733\",\"citationCount\":\"21\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Autonomous Mental Development\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/TAMD.2015.2434733\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Autonomous Mental Development","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TAMD.2015.2434733","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Predicting Purchase Decisions Based on Spatio-Temporal Functional MRI Features Using Machine Learning
Machine learning algorithms allow us to directly predict brain states based on functional magnetic resonance imaging (fMRI) data. In this study, we demonstrate the application of this framework to neuromarketing by predicting purchase decisions from spatio-temporal fMRI data. A sample of 24 subjects were shown product images and asked to make decisions of whether to buy them or not while undergoing fMRI scanning. Eight brain regions which were significantly activated during decision-making were identified using a general linear model. Time series were extracted from these regions and input into a recursive cluster elimination based support vector machine (RCE-SVM) for predicting purchase decisions. This method iteratively eliminates features which are unimportant until only the most discriminative features giving maximum accuracy are obtained. We were able to predict purchase decisions with 71% accuracy, which is higher than previously reported. In addition, we found that the most discriminative features were in signals from medial and superior frontal cortices. Therefore, this approach provides a reliable framework for using fMRI data to predict purchase-related decision-making as well as infer its neural correlates.