{"title":"主观计算的一种方法:从与人的互动中学习的机器人","authors":"P. Grüneberg, Kenji Suzuki","doi":"10.1109/TAMD.2013.2271739","DOIUrl":null,"url":null,"abstract":"We present an approach to subjective computing for the design of future robots that exhibit more adaptive and flexible behavior in terms of subjective intelligence. Instead of encapsulating subjectivity into higher order states, we show by means of a relational approach how subjective intelligence can be implemented in terms of the reciprocity of autonomous self-referentiality and direct world-coupling. Subjectivity concerns the relational arrangement of an agent's cognitive space. This theoretical concept is narrowed down to the problem of coaching a reinforcement learning agent by means of binary feedback. Algorithms are presented that implement subjective computing. The relational characteristic of subjectivity is further confirmed by a questionnaire on human perception of the robot's behavior. The results imply that subjective intelligence cannot be externally observed. In sum, we conclude that subjective intelligence in relational terms is fully tractable and therefore implementable in artificial agents.","PeriodicalId":49193,"journal":{"name":"IEEE Transactions on Autonomous Mental Development","volume":"6 1","pages":"5-18"},"PeriodicalIF":0.0000,"publicationDate":"2014-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1109/TAMD.2013.2271739","citationCount":"11","resultStr":"{\"title\":\"An Approach to Subjective Computing: A Robot That Learns From Interaction With Humans\",\"authors\":\"P. Grüneberg, Kenji Suzuki\",\"doi\":\"10.1109/TAMD.2013.2271739\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present an approach to subjective computing for the design of future robots that exhibit more adaptive and flexible behavior in terms of subjective intelligence. Instead of encapsulating subjectivity into higher order states, we show by means of a relational approach how subjective intelligence can be implemented in terms of the reciprocity of autonomous self-referentiality and direct world-coupling. Subjectivity concerns the relational arrangement of an agent's cognitive space. This theoretical concept is narrowed down to the problem of coaching a reinforcement learning agent by means of binary feedback. Algorithms are presented that implement subjective computing. The relational characteristic of subjectivity is further confirmed by a questionnaire on human perception of the robot's behavior. The results imply that subjective intelligence cannot be externally observed. In sum, we conclude that subjective intelligence in relational terms is fully tractable and therefore implementable in artificial agents.\",\"PeriodicalId\":49193,\"journal\":{\"name\":\"IEEE Transactions on Autonomous Mental Development\",\"volume\":\"6 1\",\"pages\":\"5-18\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1109/TAMD.2013.2271739\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Autonomous Mental Development\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/TAMD.2013.2271739\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Autonomous Mental Development","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TAMD.2013.2271739","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
An Approach to Subjective Computing: A Robot That Learns From Interaction With Humans
We present an approach to subjective computing for the design of future robots that exhibit more adaptive and flexible behavior in terms of subjective intelligence. Instead of encapsulating subjectivity into higher order states, we show by means of a relational approach how subjective intelligence can be implemented in terms of the reciprocity of autonomous self-referentiality and direct world-coupling. Subjectivity concerns the relational arrangement of an agent's cognitive space. This theoretical concept is narrowed down to the problem of coaching a reinforcement learning agent by means of binary feedback. Algorithms are presented that implement subjective computing. The relational characteristic of subjectivity is further confirmed by a questionnaire on human perception of the robot's behavior. The results imply that subjective intelligence cannot be externally observed. In sum, we conclude that subjective intelligence in relational terms is fully tractable and therefore implementable in artificial agents.