ghost:一个用于实时问题的组合优化框架

Q2 Computer Science
Florian Richoux, Alberto Uriarte, Jean-François Baffier
{"title":"ghost:一个用于实时问题的组合优化框架","authors":"Florian Richoux, Alberto Uriarte, Jean-François Baffier","doi":"10.1109/TCIAIG.2016.2573199","DOIUrl":null,"url":null,"abstract":"This paper presents GHOST, a combinatorial optimization framework that a real-time strategy (RTS) AI developer can use to model and solve any problem encoded as a constraint satisfaction/optimization problem (CSP/COP). We show a way to model three different problems as a CSP/COP, using instances from the RTS game StarCraft as test beds. Each problem belongs to a specific level of abstraction (the target selection as reactive control problem, the wall-in as a tactics problem, and the build order planning as a strategy problem). In our experiments, GHOST shows good results computed within some tens of milliseconds. We also show that GHOST outperforms state-of-the-art constraint solvers, matching them on the resources allocation problem, a common combinatorial optimization problem.","PeriodicalId":49192,"journal":{"name":"IEEE Transactions on Computational Intelligence and AI in Games","volume":"8 1","pages":"377-388"},"PeriodicalIF":0.0000,"publicationDate":"2016-05-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1109/TCIAIG.2016.2573199","citationCount":"10","resultStr":"{\"title\":\"ghost: A Combinatorial Optimization Framework for Real-Time Problems\",\"authors\":\"Florian Richoux, Alberto Uriarte, Jean-François Baffier\",\"doi\":\"10.1109/TCIAIG.2016.2573199\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents GHOST, a combinatorial optimization framework that a real-time strategy (RTS) AI developer can use to model and solve any problem encoded as a constraint satisfaction/optimization problem (CSP/COP). We show a way to model three different problems as a CSP/COP, using instances from the RTS game StarCraft as test beds. Each problem belongs to a specific level of abstraction (the target selection as reactive control problem, the wall-in as a tactics problem, and the build order planning as a strategy problem). In our experiments, GHOST shows good results computed within some tens of milliseconds. We also show that GHOST outperforms state-of-the-art constraint solvers, matching them on the resources allocation problem, a common combinatorial optimization problem.\",\"PeriodicalId\":49192,\"journal\":{\"name\":\"IEEE Transactions on Computational Intelligence and AI in Games\",\"volume\":\"8 1\",\"pages\":\"377-388\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-05-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1109/TCIAIG.2016.2573199\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Computational Intelligence and AI in Games\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/TCIAIG.2016.2573199\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Computer Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Computational Intelligence and AI in Games","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TCIAIG.2016.2573199","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Computer Science","Score":null,"Total":0}
引用次数: 10

摘要

本文介绍了GHOST,这是一个组合优化框架,实时策略(RTS) AI开发者可以使用它来建模和解决任何编码为约束满足/优化问题(CSP/COP)的问题。我们使用RTS游戏《星际争霸》中的实例作为测试平台,展示了一种将三个不同问题建模为CSP/COP的方法。每个问题都属于特定的抽象层次(目标选择是反应性控制问题,进驻墙是战术问题,构建顺序计划是战略问题)。在我们的实验中,GHOST在几十毫秒内就得到了很好的计算结果。我们还表明GHOST优于最先进的约束求解器,在资源分配问题(一个常见的组合优化问题)上与它们相匹配。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
ghost: A Combinatorial Optimization Framework for Real-Time Problems
This paper presents GHOST, a combinatorial optimization framework that a real-time strategy (RTS) AI developer can use to model and solve any problem encoded as a constraint satisfaction/optimization problem (CSP/COP). We show a way to model three different problems as a CSP/COP, using instances from the RTS game StarCraft as test beds. Each problem belongs to a specific level of abstraction (the target selection as reactive control problem, the wall-in as a tactics problem, and the build order planning as a strategy problem). In our experiments, GHOST shows good results computed within some tens of milliseconds. We also show that GHOST outperforms state-of-the-art constraint solvers, matching them on the resources allocation problem, a common combinatorial optimization problem.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Transactions on Computational Intelligence and AI in Games
IEEE Transactions on Computational Intelligence and AI in Games COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE-COMPUTER SCIENCE, SOFTWARE ENGINEERING
CiteScore
4.60
自引率
0.00%
发文量
0
审稿时长
>12 weeks
期刊介绍: Cessation. The IEEE Transactions on Computational Intelligence and AI in Games (T-CIAIG) publishes archival journal quality original papers in computational intelligence and related areas in artificial intelligence applied to games, including but not limited to videogames, mathematical games, human–computer interactions in games, and games involving physical objects. Emphasis is placed on the use of these methods to improve performance in and understanding of the dynamics of games, as well as gaining insight into the properties of the methods as applied to games. It also includes using games as a platform for building intelligent embedded agents for the real world. Papers connecting games to all areas of computational intelligence and traditional AI are considered.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信