F. Terraneo, A. Leva, W. Fornaciari, David Atienza Alonso
{"title":"纳米级集成电路冷却系统的建模和仿真挑战与解决方案[Feature]","authors":"F. Terraneo, A. Leva, W. Fornaciari, David Atienza Alonso","doi":"10.1109/MCAS.2023.3234727","DOIUrl":null,"url":null,"abstract":"The power density in modern Integrated Circuits (ICs) is tremendous. For example, Multi-Processor Systems-on-Chip (MPSoCs) nowadays undergo temperature swings of 40 degrees in 100 milliseconds or less, with rapidly emerging and vanishing sub-millimeter hot spots. As such, not only a simulation-based cooling assessment is vital, but one has to simulate the on-chip thermal phenomena jointly with the heat dissipation system - historically, a challenge. In recent years, however, the idea of coupling traditional 3D chip simulators with heat dissipation models written in Equation-Based Modeling (EBM) languages has proven to be a game changer. EBM languages allow one to compose a model by assembling components described in terms of Differential and Algebraic Equations (DAE) and have the simulation code generated automatically. In this article, we take a tutorial viewpoint on the matter just sketched, to put the reader in the position of exploiting the above technology. We also present the first nucleus of a model library for cooling systems, that we release as free software for the scientific and engineering community.","PeriodicalId":55038,"journal":{"name":"IEEE Circuits and Systems Magazine","volume":null,"pages":null},"PeriodicalIF":5.6000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Modeling and Simulation Challenges and Solutions in Cooling Systems for Nanoscale Integrated Circuits[Feature]\",\"authors\":\"F. Terraneo, A. Leva, W. Fornaciari, David Atienza Alonso\",\"doi\":\"10.1109/MCAS.2023.3234727\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The power density in modern Integrated Circuits (ICs) is tremendous. For example, Multi-Processor Systems-on-Chip (MPSoCs) nowadays undergo temperature swings of 40 degrees in 100 milliseconds or less, with rapidly emerging and vanishing sub-millimeter hot spots. As such, not only a simulation-based cooling assessment is vital, but one has to simulate the on-chip thermal phenomena jointly with the heat dissipation system - historically, a challenge. In recent years, however, the idea of coupling traditional 3D chip simulators with heat dissipation models written in Equation-Based Modeling (EBM) languages has proven to be a game changer. EBM languages allow one to compose a model by assembling components described in terms of Differential and Algebraic Equations (DAE) and have the simulation code generated automatically. In this article, we take a tutorial viewpoint on the matter just sketched, to put the reader in the position of exploiting the above technology. We also present the first nucleus of a model library for cooling systems, that we release as free software for the scientific and engineering community.\",\"PeriodicalId\":55038,\"journal\":{\"name\":\"IEEE Circuits and Systems Magazine\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.6000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Circuits and Systems Magazine\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1109/MCAS.2023.3234727\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Circuits and Systems Magazine","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1109/MCAS.2023.3234727","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Modeling and Simulation Challenges and Solutions in Cooling Systems for Nanoscale Integrated Circuits[Feature]
The power density in modern Integrated Circuits (ICs) is tremendous. For example, Multi-Processor Systems-on-Chip (MPSoCs) nowadays undergo temperature swings of 40 degrees in 100 milliseconds or less, with rapidly emerging and vanishing sub-millimeter hot spots. As such, not only a simulation-based cooling assessment is vital, but one has to simulate the on-chip thermal phenomena jointly with the heat dissipation system - historically, a challenge. In recent years, however, the idea of coupling traditional 3D chip simulators with heat dissipation models written in Equation-Based Modeling (EBM) languages has proven to be a game changer. EBM languages allow one to compose a model by assembling components described in terms of Differential and Algebraic Equations (DAE) and have the simulation code generated automatically. In this article, we take a tutorial viewpoint on the matter just sketched, to put the reader in the position of exploiting the above technology. We also present the first nucleus of a model library for cooling systems, that we release as free software for the scientific and engineering community.
期刊介绍:
The IEEE Circuits and Systems Magazine covers the subject areas represented by the Society's transactions, including: analog, passive, switch capacitor, and digital filters; electronic circuits, networks, graph theory, and RF communication circuits; system theory; discrete, IC, and VLSI circuit design; multidimensional circuits and systems; large-scale systems and power networks; nonlinear circuits and systems, wavelets, filter banks, and applications; neural networks; and signal processing. Content also covers the areas represented by the Society technical committees: analog signal processing, cellular neural networks and array computing, circuits and systems for communications, computer-aided network design, digital signal processing, multimedia systems and applications, neural systems and applications, nonlinear circuits and systems, power systems and power electronics and circuits, sensors and micromaching, visual signal processing and communication, and VLSI systems and applications. Lastly, the magazine covers the interests represented by the widespread conference activity of the IEEE Circuits and Systems Society. In addition to the technical articles, the magazine also covers Society administrative activities, as for instance the meetings of the Board of Governors, Society People, as for instance the stories of award winners-fellows, medalists, and so forth, and Places reached by the Society, including readable reports from the Society's conferences around the world.