Martin Hedegaard Nielsen;Elisabeth De Carvalho;Ming Shen
{"title":"利用神经接收器的混合模型训练适应非线性发射机","authors":"Martin Hedegaard Nielsen;Elisabeth De Carvalho;Ming Shen","doi":"10.1109/TCCN.2023.3307948","DOIUrl":null,"url":null,"abstract":"This paper proposes a novel hybrid model transfer learning approach designed for end-to-end OFDM neural receivers that effectively manage multiple channels and nonlinear transmitters. The hybrid model transfer learning method uses mixed Rayleigh channels and other obscured front-end models. This two-step process compensates for nonlinear front-end realizations and different channels, training a robust neural receiver. The neural receiver used is a deep complex convoluted network (DCCN), which replaces the conventional communication blocks with trainable layers that can correct the transmitter’s nonlinear performance and other imperfections in the physical layer. This training approach improves the DCCN by 35% for bit error rate (BER), and training time can be reduced by 19% compared to other training approaches for the same tasks while adapting to different fading channels and being robust to noise in power amplifier models. Measurements on both a 28 GHz active phased array in package (AiP) and a GaN Hemt PA show that the trained DCCN can adapt to nonlinear behavior without sacrificing BER. This work demonstrates how training for multiple device operation states and channels helps develop a robust deep neural network capable of demodulating OFDM symbols subject to nonlinear distortions in multiple channel environments without retraining.","PeriodicalId":13069,"journal":{"name":"IEEE Transactions on Cognitive Communications and Networking","volume":"9 6","pages":"1657-1665"},"PeriodicalIF":7.4000,"publicationDate":"2023-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Adapting to Nonlinear Transmitters With Hybrid Model Training for Neural Receivers\",\"authors\":\"Martin Hedegaard Nielsen;Elisabeth De Carvalho;Ming Shen\",\"doi\":\"10.1109/TCCN.2023.3307948\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper proposes a novel hybrid model transfer learning approach designed for end-to-end OFDM neural receivers that effectively manage multiple channels and nonlinear transmitters. The hybrid model transfer learning method uses mixed Rayleigh channels and other obscured front-end models. This two-step process compensates for nonlinear front-end realizations and different channels, training a robust neural receiver. The neural receiver used is a deep complex convoluted network (DCCN), which replaces the conventional communication blocks with trainable layers that can correct the transmitter’s nonlinear performance and other imperfections in the physical layer. This training approach improves the DCCN by 35% for bit error rate (BER), and training time can be reduced by 19% compared to other training approaches for the same tasks while adapting to different fading channels and being robust to noise in power amplifier models. Measurements on both a 28 GHz active phased array in package (AiP) and a GaN Hemt PA show that the trained DCCN can adapt to nonlinear behavior without sacrificing BER. This work demonstrates how training for multiple device operation states and channels helps develop a robust deep neural network capable of demodulating OFDM symbols subject to nonlinear distortions in multiple channel environments without retraining.\",\"PeriodicalId\":13069,\"journal\":{\"name\":\"IEEE Transactions on Cognitive Communications and Networking\",\"volume\":\"9 6\",\"pages\":\"1657-1665\"},\"PeriodicalIF\":7.4000,\"publicationDate\":\"2023-08-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Cognitive Communications and Networking\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10227358/\",\"RegionNum\":1,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"TELECOMMUNICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Cognitive Communications and Networking","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10227358/","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"TELECOMMUNICATIONS","Score":null,"Total":0}
Adapting to Nonlinear Transmitters With Hybrid Model Training for Neural Receivers
This paper proposes a novel hybrid model transfer learning approach designed for end-to-end OFDM neural receivers that effectively manage multiple channels and nonlinear transmitters. The hybrid model transfer learning method uses mixed Rayleigh channels and other obscured front-end models. This two-step process compensates for nonlinear front-end realizations and different channels, training a robust neural receiver. The neural receiver used is a deep complex convoluted network (DCCN), which replaces the conventional communication blocks with trainable layers that can correct the transmitter’s nonlinear performance and other imperfections in the physical layer. This training approach improves the DCCN by 35% for bit error rate (BER), and training time can be reduced by 19% compared to other training approaches for the same tasks while adapting to different fading channels and being robust to noise in power amplifier models. Measurements on both a 28 GHz active phased array in package (AiP) and a GaN Hemt PA show that the trained DCCN can adapt to nonlinear behavior without sacrificing BER. This work demonstrates how training for multiple device operation states and channels helps develop a robust deep neural network capable of demodulating OFDM symbols subject to nonlinear distortions in multiple channel environments without retraining.
期刊介绍:
The IEEE Transactions on Cognitive Communications and Networking (TCCN) aims to publish high-quality manuscripts that push the boundaries of cognitive communications and networking research. Cognitive, in this context, refers to the application of perception, learning, reasoning, memory, and adaptive approaches in communication system design. The transactions welcome submissions that explore various aspects of cognitive communications and networks, focusing on innovative and holistic approaches to complex system design. Key topics covered include architecture, protocols, cross-layer design, and cognition cycle design for cognitive networks. Additionally, research on machine learning, artificial intelligence, end-to-end and distributed intelligence, software-defined networking, cognitive radios, spectrum sharing, and security and privacy issues in cognitive networks are of interest. The publication also encourages papers addressing novel services and applications enabled by these cognitive concepts.