{"title":"流量优先感知的多用户分布式动态频谱接入:多代理深度 RL 方法","authors":"Shuying Zhang;Zuyao Ni;Linling Kuang;Chunxiao Jiang;Xiaohui Zhao","doi":"10.1109/TCCN.2023.3307944","DOIUrl":null,"url":null,"abstract":"Real-time information exchange on traffic and channel selection results among users in dynamic spectrum access (DSA) system consumes scarce spectrum resources. However, it is difficult to avoid collision and improve system-wide global utility simultaneously without assistance of these information in a distributed way. To solve this problem, we propose a multi-agent deep reinforcement learning (RL) based traffic priority-aware multi-user distributed DSA scheme for a multiple orthogonal channels scenario. Different from the conventional approaches for throughput sum maximization, we maximize a total network utility parameterized by the situation of each user’s traffic buffer queue. This scheme includes off-line centralized training and distributed execution. The deep Q-learning neural network (DQN) of each user is trained by an offline simulator with global information to learn near-optimal channel selection policies from the transition history. The input of DQN requires only user’s local observation to ensure that the scheme based on the trained DQNs can be executed in a distributed way. Simulation results show that the proposed scheme compared with benchmark algorithms can achieve about 90% or more of performance of Genie-aided algorithm based on global information, and is much better than random-type algorithms.","PeriodicalId":13069,"journal":{"name":"IEEE Transactions on Cognitive Communications and Networking","volume":"9 6","pages":"1454-1471"},"PeriodicalIF":7.4000,"publicationDate":"2023-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Traffic Priority-Aware Multi-User Distributed Dynamic Spectrum Access: A Multi-Agent Deep RL Approach\",\"authors\":\"Shuying Zhang;Zuyao Ni;Linling Kuang;Chunxiao Jiang;Xiaohui Zhao\",\"doi\":\"10.1109/TCCN.2023.3307944\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Real-time information exchange on traffic and channel selection results among users in dynamic spectrum access (DSA) system consumes scarce spectrum resources. However, it is difficult to avoid collision and improve system-wide global utility simultaneously without assistance of these information in a distributed way. To solve this problem, we propose a multi-agent deep reinforcement learning (RL) based traffic priority-aware multi-user distributed DSA scheme for a multiple orthogonal channels scenario. Different from the conventional approaches for throughput sum maximization, we maximize a total network utility parameterized by the situation of each user’s traffic buffer queue. This scheme includes off-line centralized training and distributed execution. The deep Q-learning neural network (DQN) of each user is trained by an offline simulator with global information to learn near-optimal channel selection policies from the transition history. The input of DQN requires only user’s local observation to ensure that the scheme based on the trained DQNs can be executed in a distributed way. Simulation results show that the proposed scheme compared with benchmark algorithms can achieve about 90% or more of performance of Genie-aided algorithm based on global information, and is much better than random-type algorithms.\",\"PeriodicalId\":13069,\"journal\":{\"name\":\"IEEE Transactions on Cognitive Communications and Networking\",\"volume\":\"9 6\",\"pages\":\"1454-1471\"},\"PeriodicalIF\":7.4000,\"publicationDate\":\"2023-08-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Cognitive Communications and Networking\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10227309/\",\"RegionNum\":1,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"TELECOMMUNICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Cognitive Communications and Networking","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10227309/","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"TELECOMMUNICATIONS","Score":null,"Total":0}
Traffic Priority-Aware Multi-User Distributed Dynamic Spectrum Access: A Multi-Agent Deep RL Approach
Real-time information exchange on traffic and channel selection results among users in dynamic spectrum access (DSA) system consumes scarce spectrum resources. However, it is difficult to avoid collision and improve system-wide global utility simultaneously without assistance of these information in a distributed way. To solve this problem, we propose a multi-agent deep reinforcement learning (RL) based traffic priority-aware multi-user distributed DSA scheme for a multiple orthogonal channels scenario. Different from the conventional approaches for throughput sum maximization, we maximize a total network utility parameterized by the situation of each user’s traffic buffer queue. This scheme includes off-line centralized training and distributed execution. The deep Q-learning neural network (DQN) of each user is trained by an offline simulator with global information to learn near-optimal channel selection policies from the transition history. The input of DQN requires only user’s local observation to ensure that the scheme based on the trained DQNs can be executed in a distributed way. Simulation results show that the proposed scheme compared with benchmark algorithms can achieve about 90% or more of performance of Genie-aided algorithm based on global information, and is much better than random-type algorithms.
期刊介绍:
The IEEE Transactions on Cognitive Communications and Networking (TCCN) aims to publish high-quality manuscripts that push the boundaries of cognitive communications and networking research. Cognitive, in this context, refers to the application of perception, learning, reasoning, memory, and adaptive approaches in communication system design. The transactions welcome submissions that explore various aspects of cognitive communications and networks, focusing on innovative and holistic approaches to complex system design. Key topics covered include architecture, protocols, cross-layer design, and cognition cycle design for cognitive networks. Additionally, research on machine learning, artificial intelligence, end-to-end and distributed intelligence, software-defined networking, cognitive radios, spectrum sharing, and security and privacy issues in cognitive networks are of interest. The publication also encourages papers addressing novel services and applications enabled by these cognitive concepts.