{"title":"一种改进的宽波束分布式SAR方位信号重构算法","authors":"Chi Zhang, Zegang Ding, Han Li, Tianyi Zhang","doi":"10.1109/lgrs.2022.3194702","DOIUrl":null,"url":null,"abstract":"Distributed multichannel synthetic aperture radar (MC-SAR) is a system in which transmitting or receiving arrays are distributed on multiple platforms or at different locations on one platform. The along-track component of the baseline makes distributed SAR promising in high-resolution wide-swath (HRWS) imaging such as azimuth MC-SAR. However, the additional channel mismatch introduced by the cross-track baseline (CTB) is considered for the distributed SAR. When the azimuth beam is wide, the azimuth-variant channel mismatch caused by the CTB must be compensated before SAR imaging. First, an improved azimuth signal reconstruction algorithm for distributed wide-beam SAR is proposed in this article. The azimuth variance of the channel mismatch is considered in a reconstruction filter to further suppress the ambiguity, and the computational consumption is decreased by approximately decomposing the mismatch matrix. Second, the ambiguity suppression performance of the proposed method is analyzed quantitatively. Finally, a simulation and real data processing are provided to demonstrate the effectiveness of the proposed method.","PeriodicalId":13046,"journal":{"name":"IEEE Geoscience and Remote Sensing Letters","volume":"19 1","pages":"1-5"},"PeriodicalIF":4.0000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An Improved Azimuth Signal Reconstruction Algorithm for Wide-Beam Distributed SAR\",\"authors\":\"Chi Zhang, Zegang Ding, Han Li, Tianyi Zhang\",\"doi\":\"10.1109/lgrs.2022.3194702\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Distributed multichannel synthetic aperture radar (MC-SAR) is a system in which transmitting or receiving arrays are distributed on multiple platforms or at different locations on one platform. The along-track component of the baseline makes distributed SAR promising in high-resolution wide-swath (HRWS) imaging such as azimuth MC-SAR. However, the additional channel mismatch introduced by the cross-track baseline (CTB) is considered for the distributed SAR. When the azimuth beam is wide, the azimuth-variant channel mismatch caused by the CTB must be compensated before SAR imaging. First, an improved azimuth signal reconstruction algorithm for distributed wide-beam SAR is proposed in this article. The azimuth variance of the channel mismatch is considered in a reconstruction filter to further suppress the ambiguity, and the computational consumption is decreased by approximately decomposing the mismatch matrix. Second, the ambiguity suppression performance of the proposed method is analyzed quantitatively. Finally, a simulation and real data processing are provided to demonstrate the effectiveness of the proposed method.\",\"PeriodicalId\":13046,\"journal\":{\"name\":\"IEEE Geoscience and Remote Sensing Letters\",\"volume\":\"19 1\",\"pages\":\"1-5\"},\"PeriodicalIF\":4.0000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Geoscience and Remote Sensing Letters\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1109/lgrs.2022.3194702\",\"RegionNum\":3,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Geoscience and Remote Sensing Letters","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1109/lgrs.2022.3194702","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
An Improved Azimuth Signal Reconstruction Algorithm for Wide-Beam Distributed SAR
Distributed multichannel synthetic aperture radar (MC-SAR) is a system in which transmitting or receiving arrays are distributed on multiple platforms or at different locations on one platform. The along-track component of the baseline makes distributed SAR promising in high-resolution wide-swath (HRWS) imaging such as azimuth MC-SAR. However, the additional channel mismatch introduced by the cross-track baseline (CTB) is considered for the distributed SAR. When the azimuth beam is wide, the azimuth-variant channel mismatch caused by the CTB must be compensated before SAR imaging. First, an improved azimuth signal reconstruction algorithm for distributed wide-beam SAR is proposed in this article. The azimuth variance of the channel mismatch is considered in a reconstruction filter to further suppress the ambiguity, and the computational consumption is decreased by approximately decomposing the mismatch matrix. Second, the ambiguity suppression performance of the proposed method is analyzed quantitatively. Finally, a simulation and real data processing are provided to demonstrate the effectiveness of the proposed method.
期刊介绍:
IEEE Geoscience and Remote Sensing Letters (GRSL) is a monthly publication for short papers (maximum length 5 pages) addressing new ideas and formative concepts in remote sensing as well as important new and timely results and concepts. Papers should relate to the theory, concepts and techniques of science and engineering as applied to sensing the earth, oceans, atmosphere, and space, and the processing, interpretation, and dissemination of this information. The technical content of papers must be both new and significant. Experimental data must be complete and include sufficient description of experimental apparatus, methods, and relevant experimental conditions. GRSL encourages the incorporation of "extended objects" or "multimedia" such as animations to enhance the shorter papers.