Avadh Bihari Narayan, A. Tiwari, R. Dwivedi, O. Dikshit
{"title":"基于相似时间序列干涉像元的持续散射识别和视角误差估计","authors":"Avadh Bihari Narayan, A. Tiwari, R. Dwivedi, O. Dikshit","doi":"10.1109/LGRS.2017.2778421","DOIUrl":null,"url":null,"abstract":"Persistent scatterer (PS) pixels contain highly coherent information, which is used in the estimation of geophysical parameters of interest. Conventionally, PS pixels are selected on the basis of the estimated noise present in the spatially uncorrelated phase component along with look-angle error. The phase history of selected PS pixels is corrected for the look-angle error followed by phase unwrapping and extraction of spatially correlated nuisance phase component leading to displacement estimation. In this letter, a novel PS selection method, which is based on a new index called the similar time-series interferometric pixels (STIPs) representing the number of neighborhood pixels with similar phase history, is proposed. In this approach, apart from PS selection, corresponding set of STIP is also used in refining look-angle error estimation. The efficiency of the proposed InSAR processing chain is demonstrated for the Sentinel-1A single look complex images of Rajmahal, Jharkhand, India, predominantly a coal mines area. Results, when compared with the conventional PS processing technique, reveal substantial improvement in terms of extracting more number of reliable PS with enhanced density.","PeriodicalId":13046,"journal":{"name":"IEEE Geoscience and Remote Sensing Letters","volume":"15 1","pages":"147-150"},"PeriodicalIF":4.0000,"publicationDate":"2018-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1109/LGRS.2017.2778421","citationCount":"6","resultStr":"{\"title\":\"Persistent Scatter Identification and Look-Angle Error Estimation Using Similar Time-Series Interferometric Pixels\",\"authors\":\"Avadh Bihari Narayan, A. Tiwari, R. Dwivedi, O. Dikshit\",\"doi\":\"10.1109/LGRS.2017.2778421\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Persistent scatterer (PS) pixels contain highly coherent information, which is used in the estimation of geophysical parameters of interest. Conventionally, PS pixels are selected on the basis of the estimated noise present in the spatially uncorrelated phase component along with look-angle error. The phase history of selected PS pixels is corrected for the look-angle error followed by phase unwrapping and extraction of spatially correlated nuisance phase component leading to displacement estimation. In this letter, a novel PS selection method, which is based on a new index called the similar time-series interferometric pixels (STIPs) representing the number of neighborhood pixels with similar phase history, is proposed. In this approach, apart from PS selection, corresponding set of STIP is also used in refining look-angle error estimation. The efficiency of the proposed InSAR processing chain is demonstrated for the Sentinel-1A single look complex images of Rajmahal, Jharkhand, India, predominantly a coal mines area. Results, when compared with the conventional PS processing technique, reveal substantial improvement in terms of extracting more number of reliable PS with enhanced density.\",\"PeriodicalId\":13046,\"journal\":{\"name\":\"IEEE Geoscience and Remote Sensing Letters\",\"volume\":\"15 1\",\"pages\":\"147-150\"},\"PeriodicalIF\":4.0000,\"publicationDate\":\"2018-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1109/LGRS.2017.2778421\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Geoscience and Remote Sensing Letters\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1109/LGRS.2017.2778421\",\"RegionNum\":3,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Geoscience and Remote Sensing Letters","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1109/LGRS.2017.2778421","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Persistent Scatter Identification and Look-Angle Error Estimation Using Similar Time-Series Interferometric Pixels
Persistent scatterer (PS) pixels contain highly coherent information, which is used in the estimation of geophysical parameters of interest. Conventionally, PS pixels are selected on the basis of the estimated noise present in the spatially uncorrelated phase component along with look-angle error. The phase history of selected PS pixels is corrected for the look-angle error followed by phase unwrapping and extraction of spatially correlated nuisance phase component leading to displacement estimation. In this letter, a novel PS selection method, which is based on a new index called the similar time-series interferometric pixels (STIPs) representing the number of neighborhood pixels with similar phase history, is proposed. In this approach, apart from PS selection, corresponding set of STIP is also used in refining look-angle error estimation. The efficiency of the proposed InSAR processing chain is demonstrated for the Sentinel-1A single look complex images of Rajmahal, Jharkhand, India, predominantly a coal mines area. Results, when compared with the conventional PS processing technique, reveal substantial improvement in terms of extracting more number of reliable PS with enhanced density.
期刊介绍:
IEEE Geoscience and Remote Sensing Letters (GRSL) is a monthly publication for short papers (maximum length 5 pages) addressing new ideas and formative concepts in remote sensing as well as important new and timely results and concepts. Papers should relate to the theory, concepts and techniques of science and engineering as applied to sensing the earth, oceans, atmosphere, and space, and the processing, interpretation, and dissemination of this information. The technical content of papers must be both new and significant. Experimental data must be complete and include sufficient description of experimental apparatus, methods, and relevant experimental conditions. GRSL encourages the incorporation of "extended objects" or "multimedia" such as animations to enhance the shorter papers.