利用同步压缩变换的逆驱动衰减补偿

IF 4 3区 地球科学 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC
Guowei Zhang, Jinghuai Gao
{"title":"利用同步压缩变换的逆驱动衰减补偿","authors":"Guowei Zhang, Jinghuai Gao","doi":"10.1109/LGRS.2017.2777598","DOIUrl":null,"url":null,"abstract":"Attenuation is a fundamental mechanism as seismic wave propagates through the earth. The loss of high-frequency energy and concomitant phase distortion can be compensated by inverse <inline-formula> <tex-math notation=\"LaTeX\">${Q}$ </tex-math></inline-formula> filtering to enhance the resolution of seismic data. Since the attenuation process depends on time and frequency, it is routinely performed in the time–frequency domain. The synchrosqueezing transform (SST), which provides highly localized time–frequency representations for the nonstationary signals due to reduced spectral smearing, is applied to implement the inverse <inline-formula> <tex-math notation=\"LaTeX\">${Q}$ </tex-math></inline-formula> filtering scheme. However, the amplitude compensation process is unstable because energy amplification is involved. To stabilize it, the amplitude compensation is regarded as an inverse problem with an L1-norm regularization term in the SST domain. The iteratively reweighted least-squares algorithm is used to solve the regularized inverse problem. Synthetic and real data examples illustrate the stability and effectiveness of the proposed method.","PeriodicalId":13046,"journal":{"name":"IEEE Geoscience and Remote Sensing Letters","volume":"15 1","pages":"132-136"},"PeriodicalIF":4.0000,"publicationDate":"2018-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1109/LGRS.2017.2777598","citationCount":"15","resultStr":"{\"title\":\"Inversion-Driven Attenuation Compensation Using Synchrosqueezing Transform\",\"authors\":\"Guowei Zhang, Jinghuai Gao\",\"doi\":\"10.1109/LGRS.2017.2777598\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Attenuation is a fundamental mechanism as seismic wave propagates through the earth. The loss of high-frequency energy and concomitant phase distortion can be compensated by inverse <inline-formula> <tex-math notation=\\\"LaTeX\\\">${Q}$ </tex-math></inline-formula> filtering to enhance the resolution of seismic data. Since the attenuation process depends on time and frequency, it is routinely performed in the time–frequency domain. The synchrosqueezing transform (SST), which provides highly localized time–frequency representations for the nonstationary signals due to reduced spectral smearing, is applied to implement the inverse <inline-formula> <tex-math notation=\\\"LaTeX\\\">${Q}$ </tex-math></inline-formula> filtering scheme. However, the amplitude compensation process is unstable because energy amplification is involved. To stabilize it, the amplitude compensation is regarded as an inverse problem with an L1-norm regularization term in the SST domain. The iteratively reweighted least-squares algorithm is used to solve the regularized inverse problem. Synthetic and real data examples illustrate the stability and effectiveness of the proposed method.\",\"PeriodicalId\":13046,\"journal\":{\"name\":\"IEEE Geoscience and Remote Sensing Letters\",\"volume\":\"15 1\",\"pages\":\"132-136\"},\"PeriodicalIF\":4.0000,\"publicationDate\":\"2018-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1109/LGRS.2017.2777598\",\"citationCount\":\"15\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Geoscience and Remote Sensing Letters\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1109/LGRS.2017.2777598\",\"RegionNum\":3,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Geoscience and Remote Sensing Letters","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1109/LGRS.2017.2777598","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 15

摘要

衰减是地震波在地球上传播的一种基本机制。通过逆${Q}$滤波可以补偿高频能量损失和伴随的相位畸变,从而提高地震资料的分辨率。由于衰减过程取决于时间和频率,因此通常在时频域中进行。采用同步压缩变换(SST)实现逆${Q}$滤波方案,该方法为非平稳信号提供了高度局域化的时频表示。但是,由于涉及能量放大,振幅补偿过程不稳定。为了使其稳定,在海表温度域中将振幅补偿视为具有l1范数正则化项的逆问题。采用迭代重加权最小二乘算法求解正则化逆问题。综合算例和实际数据算例验证了该方法的稳定性和有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Inversion-Driven Attenuation Compensation Using Synchrosqueezing Transform
Attenuation is a fundamental mechanism as seismic wave propagates through the earth. The loss of high-frequency energy and concomitant phase distortion can be compensated by inverse ${Q}$ filtering to enhance the resolution of seismic data. Since the attenuation process depends on time and frequency, it is routinely performed in the time–frequency domain. The synchrosqueezing transform (SST), which provides highly localized time–frequency representations for the nonstationary signals due to reduced spectral smearing, is applied to implement the inverse ${Q}$ filtering scheme. However, the amplitude compensation process is unstable because energy amplification is involved. To stabilize it, the amplitude compensation is regarded as an inverse problem with an L1-norm regularization term in the SST domain. The iteratively reweighted least-squares algorithm is used to solve the regularized inverse problem. Synthetic and real data examples illustrate the stability and effectiveness of the proposed method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Geoscience and Remote Sensing Letters
IEEE Geoscience and Remote Sensing Letters 工程技术-地球化学与地球物理
CiteScore
7.60
自引率
12.50%
发文量
1113
审稿时长
3.4 months
期刊介绍: IEEE Geoscience and Remote Sensing Letters (GRSL) is a monthly publication for short papers (maximum length 5 pages) addressing new ideas and formative concepts in remote sensing as well as important new and timely results and concepts. Papers should relate to the theory, concepts and techniques of science and engineering as applied to sensing the earth, oceans, atmosphere, and space, and the processing, interpretation, and dissemination of this information. The technical content of papers must be both new and significant. Experimental data must be complete and include sufficient description of experimental apparatus, methods, and relevant experimental conditions. GRSL encourages the incorporation of "extended objects" or "multimedia" such as animations to enhance the shorter papers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信