{"title":"基于局部自适应字典的多尺度联合协同表示高光谱图像分类","authors":"Jinghui Yang, Jinxi Qian","doi":"10.1109/LGRS.2017.2776113","DOIUrl":null,"url":null,"abstract":"In this letter, a multiscale joint collaborative representation with locally adaptive dictionary (MLJCRC) method is proposed for hyperspectral image classification. Based on the joint collaborative representation model, instead of selecting only a single region scale, MLJCRC incorporates complementary contextual information into classification by multiplying different scales with distinct spatial structures and characteristics. Also, MLJCRC uses a locally adaptive dictionary to reduce the influence of irrelevant pixels on representation, which improves the classification accuracy. The results of experiments on Indian Pines data and Pavia University data demonstrate that the proposed method performs better than support vector machine, sparse representation classification, and other collaborative representation-based classifications.","PeriodicalId":13046,"journal":{"name":"IEEE Geoscience and Remote Sensing Letters","volume":"15 1","pages":"112-116"},"PeriodicalIF":4.0000,"publicationDate":"2018-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1109/LGRS.2017.2776113","citationCount":"29","resultStr":"{\"title\":\"Hyperspectral Image Classification via Multiscale Joint Collaborative Representation With Locally Adaptive Dictionary\",\"authors\":\"Jinghui Yang, Jinxi Qian\",\"doi\":\"10.1109/LGRS.2017.2776113\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this letter, a multiscale joint collaborative representation with locally adaptive dictionary (MLJCRC) method is proposed for hyperspectral image classification. Based on the joint collaborative representation model, instead of selecting only a single region scale, MLJCRC incorporates complementary contextual information into classification by multiplying different scales with distinct spatial structures and characteristics. Also, MLJCRC uses a locally adaptive dictionary to reduce the influence of irrelevant pixels on representation, which improves the classification accuracy. The results of experiments on Indian Pines data and Pavia University data demonstrate that the proposed method performs better than support vector machine, sparse representation classification, and other collaborative representation-based classifications.\",\"PeriodicalId\":13046,\"journal\":{\"name\":\"IEEE Geoscience and Remote Sensing Letters\",\"volume\":\"15 1\",\"pages\":\"112-116\"},\"PeriodicalIF\":4.0000,\"publicationDate\":\"2018-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1109/LGRS.2017.2776113\",\"citationCount\":\"29\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Geoscience and Remote Sensing Letters\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1109/LGRS.2017.2776113\",\"RegionNum\":3,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Geoscience and Remote Sensing Letters","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1109/LGRS.2017.2776113","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Hyperspectral Image Classification via Multiscale Joint Collaborative Representation With Locally Adaptive Dictionary
In this letter, a multiscale joint collaborative representation with locally adaptive dictionary (MLJCRC) method is proposed for hyperspectral image classification. Based on the joint collaborative representation model, instead of selecting only a single region scale, MLJCRC incorporates complementary contextual information into classification by multiplying different scales with distinct spatial structures and characteristics. Also, MLJCRC uses a locally adaptive dictionary to reduce the influence of irrelevant pixels on representation, which improves the classification accuracy. The results of experiments on Indian Pines data and Pavia University data demonstrate that the proposed method performs better than support vector machine, sparse representation classification, and other collaborative representation-based classifications.
期刊介绍:
IEEE Geoscience and Remote Sensing Letters (GRSL) is a monthly publication for short papers (maximum length 5 pages) addressing new ideas and formative concepts in remote sensing as well as important new and timely results and concepts. Papers should relate to the theory, concepts and techniques of science and engineering as applied to sensing the earth, oceans, atmosphere, and space, and the processing, interpretation, and dissemination of this information. The technical content of papers must be both new and significant. Experimental data must be complete and include sufficient description of experimental apparatus, methods, and relevant experimental conditions. GRSL encourages the incorporation of "extended objects" or "multimedia" such as animations to enhance the shorter papers.