保护隐私的生物特征认证:密码分析与对策

IF 7 2区 计算机科学 Q1 COMPUTER SCIENCE, HARDWARE & ARCHITECTURE
Hui Zhang, Xuejun Li, Syh-Yuan Tan, M. Lee, Zhe Jin
{"title":"保护隐私的生物特征认证:密码分析与对策","authors":"Hui Zhang, Xuejun Li, Syh-Yuan Tan, M. Lee, Zhe Jin","doi":"10.1109/tdsc.2023.3239611","DOIUrl":null,"url":null,"abstract":"In this article, we cryptanalyzed a Verifiable Threshold Predicate Encryption (VTPE) enabled Privacy-Preserving Biometric Authentication (PPBA) protocol reported in IEEE-TDSC and revealed discrepancies between its security claims and our security analysis. To be precise, the underlying authentication and key agreement scheme which is based on a challenge-response mechanism and watermark signal unsatisfactorily meets the following security scenario: (a) resistance to man-in-the-middle attacks, (b) biometric template protection, and (c) user anonymity and untraceability. To address these issues, we utilize Physical Unclonable Functions (PUF) to design a PUF driven Verifiable Threshold Predicate Encryption (PUF-VTPE) scheme and a secure PPBA protocol. The PUF-VTPE-based PPBA protocol equips with dual authentication using biometric and mobile device, which offers strong authenticity before establishing the session key. Simultaneously, the non-invertible property of PUF protects the biometric templates in the physical layer. The proposed storage-free mechanism that hides the challenge of device PUF in biometric template alleviates data leakage caused by storage challenges in PUF-based authentication protocols. Moreover, the experimental analysis suggests that the proposed PPBA protocol possesses ISO/IEC 24745 criteria of non-invertibility, unlinkability, and revocability. Additionally, the proposed PPBA protocol reduces the computational cost by about 50% compared to that of the cryptanalyzed scheme.","PeriodicalId":13047,"journal":{"name":"IEEE Transactions on Dependable and Secure Computing","volume":"1 1","pages":"5056-5069"},"PeriodicalIF":7.0000,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Privacy-Preserving Biometric Authentication: Cryptanalysis and Countermeasures\",\"authors\":\"Hui Zhang, Xuejun Li, Syh-Yuan Tan, M. Lee, Zhe Jin\",\"doi\":\"10.1109/tdsc.2023.3239611\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this article, we cryptanalyzed a Verifiable Threshold Predicate Encryption (VTPE) enabled Privacy-Preserving Biometric Authentication (PPBA) protocol reported in IEEE-TDSC and revealed discrepancies between its security claims and our security analysis. To be precise, the underlying authentication and key agreement scheme which is based on a challenge-response mechanism and watermark signal unsatisfactorily meets the following security scenario: (a) resistance to man-in-the-middle attacks, (b) biometric template protection, and (c) user anonymity and untraceability. To address these issues, we utilize Physical Unclonable Functions (PUF) to design a PUF driven Verifiable Threshold Predicate Encryption (PUF-VTPE) scheme and a secure PPBA protocol. The PUF-VTPE-based PPBA protocol equips with dual authentication using biometric and mobile device, which offers strong authenticity before establishing the session key. Simultaneously, the non-invertible property of PUF protects the biometric templates in the physical layer. The proposed storage-free mechanism that hides the challenge of device PUF in biometric template alleviates data leakage caused by storage challenges in PUF-based authentication protocols. Moreover, the experimental analysis suggests that the proposed PPBA protocol possesses ISO/IEC 24745 criteria of non-invertibility, unlinkability, and revocability. Additionally, the proposed PPBA protocol reduces the computational cost by about 50% compared to that of the cryptanalyzed scheme.\",\"PeriodicalId\":13047,\"journal\":{\"name\":\"IEEE Transactions on Dependable and Secure Computing\",\"volume\":\"1 1\",\"pages\":\"5056-5069\"},\"PeriodicalIF\":7.0000,\"publicationDate\":\"2023-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Dependable and Secure Computing\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1109/tdsc.2023.3239611\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Dependable and Secure Computing","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1109/tdsc.2023.3239611","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 1

摘要

本文章由计算机程序翻译,如有差异,请以英文原文为准。
Privacy-Preserving Biometric Authentication: Cryptanalysis and Countermeasures
In this article, we cryptanalyzed a Verifiable Threshold Predicate Encryption (VTPE) enabled Privacy-Preserving Biometric Authentication (PPBA) protocol reported in IEEE-TDSC and revealed discrepancies between its security claims and our security analysis. To be precise, the underlying authentication and key agreement scheme which is based on a challenge-response mechanism and watermark signal unsatisfactorily meets the following security scenario: (a) resistance to man-in-the-middle attacks, (b) biometric template protection, and (c) user anonymity and untraceability. To address these issues, we utilize Physical Unclonable Functions (PUF) to design a PUF driven Verifiable Threshold Predicate Encryption (PUF-VTPE) scheme and a secure PPBA protocol. The PUF-VTPE-based PPBA protocol equips with dual authentication using biometric and mobile device, which offers strong authenticity before establishing the session key. Simultaneously, the non-invertible property of PUF protects the biometric templates in the physical layer. The proposed storage-free mechanism that hides the challenge of device PUF in biometric template alleviates data leakage caused by storage challenges in PUF-based authentication protocols. Moreover, the experimental analysis suggests that the proposed PPBA protocol possesses ISO/IEC 24745 criteria of non-invertibility, unlinkability, and revocability. Additionally, the proposed PPBA protocol reduces the computational cost by about 50% compared to that of the cryptanalyzed scheme.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Transactions on Dependable and Secure Computing
IEEE Transactions on Dependable and Secure Computing 工程技术-计算机:软件工程
CiteScore
11.20
自引率
5.50%
发文量
354
审稿时长
9 months
期刊介绍: The "IEEE Transactions on Dependable and Secure Computing (TDSC)" is a prestigious journal that publishes high-quality, peer-reviewed research in the field of computer science, specifically targeting the development of dependable and secure computing systems and networks. This journal is dedicated to exploring the fundamental principles, methodologies, and mechanisms that enable the design, modeling, and evaluation of systems that meet the required levels of reliability, security, and performance. The scope of TDSC includes research on measurement, modeling, and simulation techniques that contribute to the understanding and improvement of system performance under various constraints. It also covers the foundations necessary for the joint evaluation, verification, and design of systems that balance performance, security, and dependability. By publishing archival research results, TDSC aims to provide a valuable resource for researchers, engineers, and practitioners working in the areas of cybersecurity, fault tolerance, and system reliability. The journal's focus on cutting-edge research ensures that it remains at the forefront of advancements in the field, promoting the development of technologies that are critical for the functioning of modern, complex systems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信