{"title":"Magma:稳健灵活的多方支付渠道","authors":"Zhong-Liang Ge, Yi Zhang, Yu Long, Dawu Gu","doi":"10.1109/tdsc.2023.3238332","DOIUrl":null,"url":null,"abstract":"The lack of scalability is a leading issue of blockchain. By transferring transactions to off-chain, 2-party payment channels achieve instant transaction confirmation between channel users and enhance the blockchain throughput, thereby becoming a promising solution. By extending the channel from 2-party to multi-party, richer application scenarios could be supported. Meanwhile, new and exclusive requirements emerge in the multi-party off-chain payments, including robustness and flexibility. The robustness requires that the channel operation would not be impeded by any uncooperative channel member, and the flexibility guarantees that parties could join or exit the channel dynamically. However, all the current attempts either fail to achieve the new emerging properties or sacrifice some merits of 2-party channels. In this paper, we propose a new multi-party channel construction, Magma, which has good scalability. Magma outperforms the previous solutions to the multi-party payment channel for the following reasons. By canceling the heavy reliance on the cooperation of all channel members when implementing the channel operation, Magma achieves robustness. Magma also allows parties to join or exit one channel flexibly, without violating the balance security. Meanwhile, Magma's whole transaction process is performed off-chain, thereby inheriting the instant confirmation and low-cost features of 2-party channels. To guarantee the security of Magma, we formalize the multi-party channel's functionality and prove that Magma is secure in the UC framework. Moreover, our implementation and comparison show that Magma is practical and performs better than existing solutions in providing off-chain payment services.","PeriodicalId":13047,"journal":{"name":"IEEE Transactions on Dependable and Secure Computing","volume":"1 1","pages":"5024-5042"},"PeriodicalIF":7.0000,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Magma: Robust and Flexible Multi-Party Payment Channel\",\"authors\":\"Zhong-Liang Ge, Yi Zhang, Yu Long, Dawu Gu\",\"doi\":\"10.1109/tdsc.2023.3238332\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The lack of scalability is a leading issue of blockchain. By transferring transactions to off-chain, 2-party payment channels achieve instant transaction confirmation between channel users and enhance the blockchain throughput, thereby becoming a promising solution. By extending the channel from 2-party to multi-party, richer application scenarios could be supported. Meanwhile, new and exclusive requirements emerge in the multi-party off-chain payments, including robustness and flexibility. The robustness requires that the channel operation would not be impeded by any uncooperative channel member, and the flexibility guarantees that parties could join or exit the channel dynamically. However, all the current attempts either fail to achieve the new emerging properties or sacrifice some merits of 2-party channels. In this paper, we propose a new multi-party channel construction, Magma, which has good scalability. Magma outperforms the previous solutions to the multi-party payment channel for the following reasons. By canceling the heavy reliance on the cooperation of all channel members when implementing the channel operation, Magma achieves robustness. Magma also allows parties to join or exit one channel flexibly, without violating the balance security. Meanwhile, Magma's whole transaction process is performed off-chain, thereby inheriting the instant confirmation and low-cost features of 2-party channels. To guarantee the security of Magma, we formalize the multi-party channel's functionality and prove that Magma is secure in the UC framework. Moreover, our implementation and comparison show that Magma is practical and performs better than existing solutions in providing off-chain payment services.\",\"PeriodicalId\":13047,\"journal\":{\"name\":\"IEEE Transactions on Dependable and Secure Computing\",\"volume\":\"1 1\",\"pages\":\"5024-5042\"},\"PeriodicalIF\":7.0000,\"publicationDate\":\"2023-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Dependable and Secure Computing\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1109/tdsc.2023.3238332\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Dependable and Secure Computing","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1109/tdsc.2023.3238332","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
Magma: Robust and Flexible Multi-Party Payment Channel
The lack of scalability is a leading issue of blockchain. By transferring transactions to off-chain, 2-party payment channels achieve instant transaction confirmation between channel users and enhance the blockchain throughput, thereby becoming a promising solution. By extending the channel from 2-party to multi-party, richer application scenarios could be supported. Meanwhile, new and exclusive requirements emerge in the multi-party off-chain payments, including robustness and flexibility. The robustness requires that the channel operation would not be impeded by any uncooperative channel member, and the flexibility guarantees that parties could join or exit the channel dynamically. However, all the current attempts either fail to achieve the new emerging properties or sacrifice some merits of 2-party channels. In this paper, we propose a new multi-party channel construction, Magma, which has good scalability. Magma outperforms the previous solutions to the multi-party payment channel for the following reasons. By canceling the heavy reliance on the cooperation of all channel members when implementing the channel operation, Magma achieves robustness. Magma also allows parties to join or exit one channel flexibly, without violating the balance security. Meanwhile, Magma's whole transaction process is performed off-chain, thereby inheriting the instant confirmation and low-cost features of 2-party channels. To guarantee the security of Magma, we formalize the multi-party channel's functionality and prove that Magma is secure in the UC framework. Moreover, our implementation and comparison show that Magma is practical and performs better than existing solutions in providing off-chain payment services.
期刊介绍:
The "IEEE Transactions on Dependable and Secure Computing (TDSC)" is a prestigious journal that publishes high-quality, peer-reviewed research in the field of computer science, specifically targeting the development of dependable and secure computing systems and networks. This journal is dedicated to exploring the fundamental principles, methodologies, and mechanisms that enable the design, modeling, and evaluation of systems that meet the required levels of reliability, security, and performance.
The scope of TDSC includes research on measurement, modeling, and simulation techniques that contribute to the understanding and improvement of system performance under various constraints. It also covers the foundations necessary for the joint evaluation, verification, and design of systems that balance performance, security, and dependability.
By publishing archival research results, TDSC aims to provide a valuable resource for researchers, engineers, and practitioners working in the areas of cybersecurity, fault tolerance, and system reliability. The journal's focus on cutting-edge research ensures that it remains at the forefront of advancements in the field, promoting the development of technologies that are critical for the functioning of modern, complex systems.