温敏香精纳米胶囊的制备及其控释性能研究

IF 2.1 3区 农林科学 Q3 CHEMISTRY, APPLIED
Di Zhao, Qixuan Zhao, Zhifei Xu, Xiaodi Shi
{"title":"温敏香精纳米胶囊的制备及其控释性能研究","authors":"Di Zhao,&nbsp;Qixuan Zhao,&nbsp;Zhifei Xu,&nbsp;Xiaodi Shi","doi":"10.1002/ffj.3711","DOIUrl":null,"url":null,"abstract":"<p>Temperature-sensitive nanocapsules with controllable release properties were synthesized through miniemulsion free radical polymerization method. Temperature-sensitive N,N-diethylacrylamide/N,N-dimethylacrylamide (DEA/DMA) copolymer were systematically synthesized as shell materials, and the fragrance-dementholized peppermint oil (DPO) was encapsulated as hydrophobic core material. The as prepared nanocapsules had high encapsulation efficiencies of more than 90% and small average diameters of less than 150 nm, as well as narrow polydispersity index (PDI) below 0.17. Furthermore, decreased DEA contents in shell material resulted in higher phase transition temperature and slower release rate of fragrance under the same temperature. By varying the copolymer composition of shell materials, the controllable release property of as prepared nanocapsules were also varied under different temperatures.</p>","PeriodicalId":170,"journal":{"name":"Flavour and Fragrance Journal","volume":"37 5","pages":"285-292"},"PeriodicalIF":2.1000,"publicationDate":"2022-07-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Preparation of temperature-sensitive fragrance nanocapsules and its controllable release property\",\"authors\":\"Di Zhao,&nbsp;Qixuan Zhao,&nbsp;Zhifei Xu,&nbsp;Xiaodi Shi\",\"doi\":\"10.1002/ffj.3711\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Temperature-sensitive nanocapsules with controllable release properties were synthesized through miniemulsion free radical polymerization method. Temperature-sensitive N,N-diethylacrylamide/N,N-dimethylacrylamide (DEA/DMA) copolymer were systematically synthesized as shell materials, and the fragrance-dementholized peppermint oil (DPO) was encapsulated as hydrophobic core material. The as prepared nanocapsules had high encapsulation efficiencies of more than 90% and small average diameters of less than 150 nm, as well as narrow polydispersity index (PDI) below 0.17. Furthermore, decreased DEA contents in shell material resulted in higher phase transition temperature and slower release rate of fragrance under the same temperature. By varying the copolymer composition of shell materials, the controllable release property of as prepared nanocapsules were also varied under different temperatures.</p>\",\"PeriodicalId\":170,\"journal\":{\"name\":\"Flavour and Fragrance Journal\",\"volume\":\"37 5\",\"pages\":\"285-292\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2022-07-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Flavour and Fragrance Journal\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/ffj.3711\",\"RegionNum\":3,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Flavour and Fragrance Journal","FirstCategoryId":"97","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/ffj.3711","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 1

摘要

采用微乳液自由基聚合法制备了具有控释性能的温度敏感型纳米胶囊。系统地合成了温度敏感型N,N-二乙基丙烯酰胺/N,N-二甲基丙烯酰胺(DEA/DMA)共聚物作为壳材料,并将香味脱酚薄荷油(DPO)包封为疏水芯材料。制备的纳米胶囊包封效率高达90%以上,平均直径小于150 nm,多分散性指数(PDI)小于0.17。同时,在相同的温度下,壳材中DEA含量的降低导致其相变温度升高,香气释放速度减慢。通过改变壳体材料的共聚物组成,制备的纳米胶囊在不同温度下的可控释放性能也发生了变化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Preparation of temperature-sensitive fragrance nanocapsules and its controllable release property

Preparation of temperature-sensitive fragrance nanocapsules and its controllable release property

Temperature-sensitive nanocapsules with controllable release properties were synthesized through miniemulsion free radical polymerization method. Temperature-sensitive N,N-diethylacrylamide/N,N-dimethylacrylamide (DEA/DMA) copolymer were systematically synthesized as shell materials, and the fragrance-dementholized peppermint oil (DPO) was encapsulated as hydrophobic core material. The as prepared nanocapsules had high encapsulation efficiencies of more than 90% and small average diameters of less than 150 nm, as well as narrow polydispersity index (PDI) below 0.17. Furthermore, decreased DEA contents in shell material resulted in higher phase transition temperature and slower release rate of fragrance under the same temperature. By varying the copolymer composition of shell materials, the controllable release property of as prepared nanocapsules were also varied under different temperatures.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Flavour and Fragrance Journal
Flavour and Fragrance Journal 工程技术-食品科技
CiteScore
6.00
自引率
3.80%
发文量
40
审稿时长
1 months
期刊介绍: Flavour and Fragrance Journal publishes original research articles, reviews and special reports on all aspects of flavour and fragrance. Its high scientific standards and international character is ensured by a strict refereeing system and an editorial team representing the multidisciplinary expertise of our field of research. Because analysis is the matter of many submissions and supports the data used in many other domains, a special attention is placed on the quality of analytical techniques. All natural or synthetic products eliciting or influencing a sensory stimulus related to gustation or olfaction are eligible for publication in the Journal. Eligible as well are the techniques related to their preparation, characterization and safety. This notably involves analytical and sensory analysis, physical chemistry, modeling, microbiology – antimicrobial properties, biology, chemosensory perception and legislation. The overall aim is to produce a journal of the highest quality which provides a scientific forum for academia as well as for industry on all aspects of flavors, fragrances and related materials, and which is valued by readers and contributors alike.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信