基于核主成分分析和支持向量机的振动信号熵特征融合诊断

IF 4.3 3区 工程技术 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
Yongkui Sun, Yuan Cao, Peng Li, S. Su
{"title":"基于核主成分分析和支持向量机的振动信号熵特征融合诊断","authors":"Yongkui Sun, Yuan Cao, Peng Li, S. Su","doi":"10.1109/mits.2023.3295376","DOIUrl":null,"url":null,"abstract":"Railway point machines are the key equipment that controls the train route and affects the safety of train operation. Complex and harsh working environments lead to frequent failures, accounting for 40% of the total failures of the railway signaling system. Thus, it is an urgent task to present an intelligent fault diagnosis approach. Considering the easy acquisition and anti-interference characteristics of vibration signals, this article develops a vibration signal-based diagnosis approach. First, variational mode decomposition (VMD) is utilized for nonstationary vibration signal preprocessing, which is verified as a more effective tool than empirical mode decomposition. Then, to comprehensively characterize nonlinear fault characteristics, five kinds of entropy are extracted. To eliminate the redundant information of high-dimensional features, kernel principal component analysis is utilized for multientropy feature fusion. Experiment comparisons demonstrate the superiority of the proposed VMD preprocessing and multientropy fusion method. The diagnosis accuracies of normal-to-reverse and reverse-to-normal switching directions reach 96.57% and 99.43%, respectively, which provides theoretical support for onsite operation and maintenance staff.","PeriodicalId":48826,"journal":{"name":"IEEE Intelligent Transportation Systems Magazine","volume":"1 1","pages":"96-108"},"PeriodicalIF":4.3000,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Entropy Feature Fusion-Based Diagnosis for Railway Point Machines Using Vibration Signals Based on Kernel Principal Component Analysis and Support Vector Machine\",\"authors\":\"Yongkui Sun, Yuan Cao, Peng Li, S. Su\",\"doi\":\"10.1109/mits.2023.3295376\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Railway point machines are the key equipment that controls the train route and affects the safety of train operation. Complex and harsh working environments lead to frequent failures, accounting for 40% of the total failures of the railway signaling system. Thus, it is an urgent task to present an intelligent fault diagnosis approach. Considering the easy acquisition and anti-interference characteristics of vibration signals, this article develops a vibration signal-based diagnosis approach. First, variational mode decomposition (VMD) is utilized for nonstationary vibration signal preprocessing, which is verified as a more effective tool than empirical mode decomposition. Then, to comprehensively characterize nonlinear fault characteristics, five kinds of entropy are extracted. To eliminate the redundant information of high-dimensional features, kernel principal component analysis is utilized for multientropy feature fusion. Experiment comparisons demonstrate the superiority of the proposed VMD preprocessing and multientropy fusion method. The diagnosis accuracies of normal-to-reverse and reverse-to-normal switching directions reach 96.57% and 99.43%, respectively, which provides theoretical support for onsite operation and maintenance staff.\",\"PeriodicalId\":48826,\"journal\":{\"name\":\"IEEE Intelligent Transportation Systems Magazine\",\"volume\":\"1 1\",\"pages\":\"96-108\"},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2023-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Intelligent Transportation Systems Magazine\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1109/mits.2023.3295376\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Intelligent Transportation Systems Magazine","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1109/mits.2023.3295376","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

本文章由计算机程序翻译,如有差异,请以英文原文为准。
Entropy Feature Fusion-Based Diagnosis for Railway Point Machines Using Vibration Signals Based on Kernel Principal Component Analysis and Support Vector Machine
Railway point machines are the key equipment that controls the train route and affects the safety of train operation. Complex and harsh working environments lead to frequent failures, accounting for 40% of the total failures of the railway signaling system. Thus, it is an urgent task to present an intelligent fault diagnosis approach. Considering the easy acquisition and anti-interference characteristics of vibration signals, this article develops a vibration signal-based diagnosis approach. First, variational mode decomposition (VMD) is utilized for nonstationary vibration signal preprocessing, which is verified as a more effective tool than empirical mode decomposition. Then, to comprehensively characterize nonlinear fault characteristics, five kinds of entropy are extracted. To eliminate the redundant information of high-dimensional features, kernel principal component analysis is utilized for multientropy feature fusion. Experiment comparisons demonstrate the superiority of the proposed VMD preprocessing and multientropy fusion method. The diagnosis accuracies of normal-to-reverse and reverse-to-normal switching directions reach 96.57% and 99.43%, respectively, which provides theoretical support for onsite operation and maintenance staff.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Intelligent Transportation Systems Magazine
IEEE Intelligent Transportation Systems Magazine ENGINEERING, ELECTRICAL & ELECTRONIC-TRANSPORTATION SCIENCE & TECHNOLOGY
CiteScore
8.00
自引率
8.30%
发文量
147
期刊介绍: The IEEE Intelligent Transportation Systems Magazine (ITSM) publishes peer-reviewed articles that provide innovative research ideas and application results, report significant application case studies, and raise awareness of pressing research and application challenges in all areas of intelligent transportation systems. In contrast to the highly academic publication of the IEEE Transactions on Intelligent Transportation Systems, the ITS Magazine focuses on providing needed information to all members of IEEE ITS society, serving as a dissemination vehicle for ITS Society members and the others to learn the state of the art development and progress on ITS research and applications. High quality tutorials, surveys, successful implementations, technology reviews, lessons learned, policy and societal impacts, and ITS educational issues are published as well. The ITS Magazine also serves as an ideal media communication vehicle between the governing body of ITS society and its membership and promotes ITS community development and growth.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信