K. Tsai, Vanja Stojković, D. J. Lee, Iris D. Young, Teresa Szal, N. Vázquez-Laslop, A. Mankin, James S. Fraser, D. Fujimori
{"title":"恶唑烷酮类抗生素对翻译特异性抑制的结构基础","authors":"K. Tsai, Vanja Stojković, D. J. Lee, Iris D. Young, Teresa Szal, N. Vázquez-Laslop, A. Mankin, James S. Fraser, D. Fujimori","doi":"10.1101/2021.08.10.455846","DOIUrl":null,"url":null,"abstract":"The antibiotic linezolid, the first clinically approved member of the oxazolidinone class, inhibits translation of bacterial ribosomes by binding to the peptidyl transferase center. Recent work has demonstrated that linezolid does not inhibit peptide bond formation at all sequences but rather acts in a context-specific manner, namely when alanine occupies the penultimate position of the nascent chain. In this study, we determined that the second-generation oxazolidinone radezolid also induces stalling with alanine at the penultimate position. However, the molecular basis for context-specificity of these inhibitors has not been elucidated. In this study, we determined high-resolution cryo-EM structures of both linezolid and radezolid-stalled ribosome complexes. These structures reveal that the alanine side chain fits within a small hydrophobic crevice created by oxazolidinone, resulting in improved ribosome binding. Modification of the ribosome by the antibiotic resistance enzyme Cfr disrupts stalling by forcing the antibiotic to adopt a conformation that narrows the hydrophobic alanine pocket. Together, the structural and biochemical findings presented in this work provide molecular understanding of context-specific inhibition of translation by clinically important oxazolidinone antibiotics.","PeriodicalId":18836,"journal":{"name":"Nature Structural &Molecular Biology","volume":null,"pages":null},"PeriodicalIF":16.8000,"publicationDate":"2021-08-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Structural basis for context-specific inhibition of translation by oxazolidinone antibiotics\",\"authors\":\"K. Tsai, Vanja Stojković, D. J. Lee, Iris D. Young, Teresa Szal, N. Vázquez-Laslop, A. Mankin, James S. Fraser, D. Fujimori\",\"doi\":\"10.1101/2021.08.10.455846\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The antibiotic linezolid, the first clinically approved member of the oxazolidinone class, inhibits translation of bacterial ribosomes by binding to the peptidyl transferase center. Recent work has demonstrated that linezolid does not inhibit peptide bond formation at all sequences but rather acts in a context-specific manner, namely when alanine occupies the penultimate position of the nascent chain. In this study, we determined that the second-generation oxazolidinone radezolid also induces stalling with alanine at the penultimate position. However, the molecular basis for context-specificity of these inhibitors has not been elucidated. In this study, we determined high-resolution cryo-EM structures of both linezolid and radezolid-stalled ribosome complexes. These structures reveal that the alanine side chain fits within a small hydrophobic crevice created by oxazolidinone, resulting in improved ribosome binding. Modification of the ribosome by the antibiotic resistance enzyme Cfr disrupts stalling by forcing the antibiotic to adopt a conformation that narrows the hydrophobic alanine pocket. Together, the structural and biochemical findings presented in this work provide molecular understanding of context-specific inhibition of translation by clinically important oxazolidinone antibiotics.\",\"PeriodicalId\":18836,\"journal\":{\"name\":\"Nature Structural &Molecular Biology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.8000,\"publicationDate\":\"2021-08-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature Structural &Molecular Biology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1101/2021.08.10.455846\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Structural &Molecular Biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1101/2021.08.10.455846","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Structural basis for context-specific inhibition of translation by oxazolidinone antibiotics
The antibiotic linezolid, the first clinically approved member of the oxazolidinone class, inhibits translation of bacterial ribosomes by binding to the peptidyl transferase center. Recent work has demonstrated that linezolid does not inhibit peptide bond formation at all sequences but rather acts in a context-specific manner, namely when alanine occupies the penultimate position of the nascent chain. In this study, we determined that the second-generation oxazolidinone radezolid also induces stalling with alanine at the penultimate position. However, the molecular basis for context-specificity of these inhibitors has not been elucidated. In this study, we determined high-resolution cryo-EM structures of both linezolid and radezolid-stalled ribosome complexes. These structures reveal that the alanine side chain fits within a small hydrophobic crevice created by oxazolidinone, resulting in improved ribosome binding. Modification of the ribosome by the antibiotic resistance enzyme Cfr disrupts stalling by forcing the antibiotic to adopt a conformation that narrows the hydrophobic alanine pocket. Together, the structural and biochemical findings presented in this work provide molecular understanding of context-specific inhibition of translation by clinically important oxazolidinone antibiotics.
期刊介绍:
Nature Structural & Molecular Biology is a monthly journal that focuses on the functional and mechanistic understanding of how molecular components in a biological process work together. It serves as an integrated forum for structural and molecular studies. The journal places a strong emphasis on the functional and mechanistic understanding of how molecular components in a biological process work together. Some specific areas of interest include the structure and function of proteins, nucleic acids, and other macromolecules, DNA replication, repair and recombination, transcription, regulation of transcription and translation, protein folding, processing and degradation, signal transduction, and intracellular signaling.