A. Loraine, G. Helt, M. Cline, Michael A. Siani-Rose
{"title":"人类基因组中选择性剪接的蛋白质分析","authors":"A. Loraine, G. Helt, M. Cline, Michael A. Siani-Rose","doi":"10.1109/CSB.2002.1039335","DOIUrl":null,"url":null,"abstract":"Understanding the functional significance of alternative splicing and other mechanisms that generate RNA transcript diversity is an important challenge facing modern-day molecular biology. Using homology-based, protein sequence analysis methods, it should be possible to investigate how transcript diversity impacts protein structure and function. To test this, a data mining technique (\"DiffHit\") was developed to identify and catalog genes producing protein isoforms which exhibit distinct profiles of conserved protein motifs. We found that out of a test set of over 1,300 alternatively spliced genes with solved genomic structure, over 30% exhibited a differential profile of conserved InterPro and/or Blocks protein motifs across distinct isoforms. These results suggest that motif databases such as Blocks and InterPro are potentially useful tools for investigating how alternative transcript structure affects gene function.","PeriodicalId":87204,"journal":{"name":"Proceedings. IEEE Computer Society Bioinformatics Conference","volume":"1 1","pages":"118-124"},"PeriodicalIF":0.0000,"publicationDate":"2002-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1109/CSB.2002.1039335","citationCount":"8","resultStr":"{\"title\":\"Protein-based analysis of alternative splicing in the human genome\",\"authors\":\"A. Loraine, G. Helt, M. Cline, Michael A. Siani-Rose\",\"doi\":\"10.1109/CSB.2002.1039335\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Understanding the functional significance of alternative splicing and other mechanisms that generate RNA transcript diversity is an important challenge facing modern-day molecular biology. Using homology-based, protein sequence analysis methods, it should be possible to investigate how transcript diversity impacts protein structure and function. To test this, a data mining technique (\\\"DiffHit\\\") was developed to identify and catalog genes producing protein isoforms which exhibit distinct profiles of conserved protein motifs. We found that out of a test set of over 1,300 alternatively spliced genes with solved genomic structure, over 30% exhibited a differential profile of conserved InterPro and/or Blocks protein motifs across distinct isoforms. These results suggest that motif databases such as Blocks and InterPro are potentially useful tools for investigating how alternative transcript structure affects gene function.\",\"PeriodicalId\":87204,\"journal\":{\"name\":\"Proceedings. IEEE Computer Society Bioinformatics Conference\",\"volume\":\"1 1\",\"pages\":\"118-124\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2002-08-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1109/CSB.2002.1039335\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings. IEEE Computer Society Bioinformatics Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CSB.2002.1039335\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings. IEEE Computer Society Bioinformatics Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CSB.2002.1039335","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Protein-based analysis of alternative splicing in the human genome
Understanding the functional significance of alternative splicing and other mechanisms that generate RNA transcript diversity is an important challenge facing modern-day molecular biology. Using homology-based, protein sequence analysis methods, it should be possible to investigate how transcript diversity impacts protein structure and function. To test this, a data mining technique ("DiffHit") was developed to identify and catalog genes producing protein isoforms which exhibit distinct profiles of conserved protein motifs. We found that out of a test set of over 1,300 alternatively spliced genes with solved genomic structure, over 30% exhibited a differential profile of conserved InterPro and/or Blocks protein motifs across distinct isoforms. These results suggest that motif databases such as Blocks and InterPro are potentially useful tools for investigating how alternative transcript structure affects gene function.