聚类大序列数据库中的高相似性序列比较

Lorie Dudoignon, E. Glémet, H. C. Heus, M. Raffinot
{"title":"聚类大序列数据库中的高相似性序列比较","authors":"Lorie Dudoignon, E. Glémet, H. C. Heus, M. Raffinot","doi":"10.1109/CSB.2002.1039345","DOIUrl":null,"url":null,"abstract":"We present a fast algorithm for sequence clustering and searching which works with large sequence databases. It uses a strictly defined similarity measure. The algorithm is faster than conventional EST clustering approaches because its complexity is directly related to the number of subwords shared by the sequences. Furthermore, the algorithm also works with proteic sequences and large sequences like entire chromosomes. We present a theoretical study of our approach and provide experimental results.","PeriodicalId":87204,"journal":{"name":"Proceedings. IEEE Computer Society Bioinformatics Conference","volume":"1 1","pages":"228-236"},"PeriodicalIF":0.0000,"publicationDate":"2002-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1109/CSB.2002.1039345","citationCount":"4","resultStr":"{\"title\":\"High similarity sequence comparison in clustering large sequence databases\",\"authors\":\"Lorie Dudoignon, E. Glémet, H. C. Heus, M. Raffinot\",\"doi\":\"10.1109/CSB.2002.1039345\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present a fast algorithm for sequence clustering and searching which works with large sequence databases. It uses a strictly defined similarity measure. The algorithm is faster than conventional EST clustering approaches because its complexity is directly related to the number of subwords shared by the sequences. Furthermore, the algorithm also works with proteic sequences and large sequences like entire chromosomes. We present a theoretical study of our approach and provide experimental results.\",\"PeriodicalId\":87204,\"journal\":{\"name\":\"Proceedings. IEEE Computer Society Bioinformatics Conference\",\"volume\":\"1 1\",\"pages\":\"228-236\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2002-08-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1109/CSB.2002.1039345\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings. IEEE Computer Society Bioinformatics Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CSB.2002.1039345\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings. IEEE Computer Society Bioinformatics Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CSB.2002.1039345","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

提出了一种适用于大型序列数据库的快速序列聚类和搜索算法。它使用严格定义的相似性度量。该算法比传统的EST聚类方法更快,因为它的复杂度与序列共享子词的数量直接相关。此外,该算法还适用于蛋白质序列和像整个染色体这样的大序列。我们对我们的方法进行了理论研究,并提供了实验结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
High similarity sequence comparison in clustering large sequence databases
We present a fast algorithm for sequence clustering and searching which works with large sequence databases. It uses a strictly defined similarity measure. The algorithm is faster than conventional EST clustering approaches because its complexity is directly related to the number of subwords shared by the sequences. Furthermore, the algorithm also works with proteic sequences and large sequences like entire chromosomes. We present a theoretical study of our approach and provide experimental results.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信