一种用于蛋白质粗接触图预测的双递归神经网络结构

A. Vullo, P. Frasconi
{"title":"一种用于蛋白质粗接触图预测的双递归神经网络结构","authors":"A. Vullo, P. Frasconi","doi":"10.1109/CSB.2002.1039341","DOIUrl":null,"url":null,"abstract":"Prediction of contact maps may be seen as a strategic step towards the solution of fundamental open problems in structural genomics. In this paper we focus on coarse grained maps that describe the spatial neighborhood relation between secondary structure elements (helices, strands, and coils) of a protein. We introduce a new machine learning approach for scoring candidate contact maps. The method combines a specialized noncausal recursive connectionist architecture and a heuristic graph search algorithm. The network is trained using candidate graphs generated during search. We show how the process of selecting and generating training examples is important for tuning the precision of the predictor.","PeriodicalId":87204,"journal":{"name":"Proceedings. IEEE Computer Society Bioinformatics Conference","volume":"1 1","pages":"187-196"},"PeriodicalIF":0.0000,"publicationDate":"2002-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1109/CSB.2002.1039341","citationCount":"8","resultStr":"{\"title\":\"A bi-recursive neural network architecture for the prediction of protein coarse contact maps\",\"authors\":\"A. Vullo, P. Frasconi\",\"doi\":\"10.1109/CSB.2002.1039341\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Prediction of contact maps may be seen as a strategic step towards the solution of fundamental open problems in structural genomics. In this paper we focus on coarse grained maps that describe the spatial neighborhood relation between secondary structure elements (helices, strands, and coils) of a protein. We introduce a new machine learning approach for scoring candidate contact maps. The method combines a specialized noncausal recursive connectionist architecture and a heuristic graph search algorithm. The network is trained using candidate graphs generated during search. We show how the process of selecting and generating training examples is important for tuning the precision of the predictor.\",\"PeriodicalId\":87204,\"journal\":{\"name\":\"Proceedings. IEEE Computer Society Bioinformatics Conference\",\"volume\":\"1 1\",\"pages\":\"187-196\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2002-08-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1109/CSB.2002.1039341\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings. IEEE Computer Society Bioinformatics Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CSB.2002.1039341\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings. IEEE Computer Society Bioinformatics Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CSB.2002.1039341","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

接触图谱的预测可能被视为解决结构基因组学中基本开放问题的战略步骤。在本文中,我们着重于描述蛋白质二级结构元素(螺旋、链和线圈)之间空间邻域关系的粗粒度图。我们介绍了一种新的机器学习方法来评分候选接触图。该方法结合了一种专门的非因果递归连接论体系结构和启发式图搜索算法。网络使用搜索过程中生成的候选图进行训练。我们展示了选择和生成训练样本的过程对于调整预测器的精度是多么重要。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A bi-recursive neural network architecture for the prediction of protein coarse contact maps
Prediction of contact maps may be seen as a strategic step towards the solution of fundamental open problems in structural genomics. In this paper we focus on coarse grained maps that describe the spatial neighborhood relation between secondary structure elements (helices, strands, and coils) of a protein. We introduce a new machine learning approach for scoring candidate contact maps. The method combines a specialized noncausal recursive connectionist architecture and a heuristic graph search algorithm. The network is trained using candidate graphs generated during search. We show how the process of selecting and generating training examples is important for tuning the precision of the predictor.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信