染色体物理映射的平行蒙特卡罗方法

S. Bhandarkar, J. Arnold
{"title":"染色体物理映射的平行蒙特卡罗方法","authors":"S. Bhandarkar, J. Arnold","doi":"10.1109/CSB.2002.1039330","DOIUrl":null,"url":null,"abstract":"Reconstructing a physical map of a chromosome from a genomic library presents a central computational problem in genetics. Physical map reconstruction in the presence of errors is a problem of high, computational complexity. Parallel Monte Carlo methods for a maximum likelihood estimation-based approach to physical map reconstruction are presented. The estimation procedure entails gradient descent search for determining the optimal spacings between probes for a given probe ordering. The optimal probe ordering is determined using a simulated Monte Carlo algorithm. A two-tier parallelization. strategy is proposed wherein the gradient descent search is parallelized at the lower level and the simulated Monte Carlo algorithm is simultaneously parallelized at the higher level. Implementation and experimental results on a network of shared-memory symmetric multiprocessors (SMP) are presented.","PeriodicalId":87204,"journal":{"name":"Proceedings. IEEE Computer Society Bioinformatics Conference","volume":"1 1","pages":"64-75"},"PeriodicalIF":0.0000,"publicationDate":"2002-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1109/CSB.2002.1039330","citationCount":"5","resultStr":"{\"title\":\"Parallel Monte Carlo methods for physical mapping of chromosomes\",\"authors\":\"S. Bhandarkar, J. Arnold\",\"doi\":\"10.1109/CSB.2002.1039330\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Reconstructing a physical map of a chromosome from a genomic library presents a central computational problem in genetics. Physical map reconstruction in the presence of errors is a problem of high, computational complexity. Parallel Monte Carlo methods for a maximum likelihood estimation-based approach to physical map reconstruction are presented. The estimation procedure entails gradient descent search for determining the optimal spacings between probes for a given probe ordering. The optimal probe ordering is determined using a simulated Monte Carlo algorithm. A two-tier parallelization. strategy is proposed wherein the gradient descent search is parallelized at the lower level and the simulated Monte Carlo algorithm is simultaneously parallelized at the higher level. Implementation and experimental results on a network of shared-memory symmetric multiprocessors (SMP) are presented.\",\"PeriodicalId\":87204,\"journal\":{\"name\":\"Proceedings. IEEE Computer Society Bioinformatics Conference\",\"volume\":\"1 1\",\"pages\":\"64-75\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2002-08-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1109/CSB.2002.1039330\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings. IEEE Computer Society Bioinformatics Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CSB.2002.1039330\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings. IEEE Computer Society Bioinformatics Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CSB.2002.1039330","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

从基因组文库中重建染色体的物理图谱是遗传学中的一个核心计算问题。存在误差的物理地图重建是一个计算复杂度很高的问题。提出了一种基于极大似然估计的物理地图重构并行蒙特卡罗方法。估计过程需要梯度下降搜索,以确定给定探针顺序下探针之间的最佳间隔。利用模拟蒙特卡罗算法确定了最优探测顺序。两层并行化。提出了梯度下降搜索在较低层次并行化,模拟蒙特卡罗算法在较高层次并行化的策略。给出了共享内存对称多处理器(SMP)网络的实现和实验结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Parallel Monte Carlo methods for physical mapping of chromosomes
Reconstructing a physical map of a chromosome from a genomic library presents a central computational problem in genetics. Physical map reconstruction in the presence of errors is a problem of high, computational complexity. Parallel Monte Carlo methods for a maximum likelihood estimation-based approach to physical map reconstruction are presented. The estimation procedure entails gradient descent search for determining the optimal spacings between probes for a given probe ordering. The optimal probe ordering is determined using a simulated Monte Carlo algorithm. A two-tier parallelization. strategy is proposed wherein the gradient descent search is parallelized at the lower level and the simulated Monte Carlo algorithm is simultaneously parallelized at the higher level. Implementation and experimental results on a network of shared-memory symmetric multiprocessors (SMP) are presented.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信