基于语篇分割的电子书自动分类特征选择方法

Q Social Sciences
Jiunn-Liang Guo, Hei-Chia Wang, Ming-Way Lai
{"title":"基于语篇分割的电子书自动分类特征选择方法","authors":"Jiunn-Liang Guo, Hei-Chia Wang, Ming-Way Lai","doi":"10.1108/PROG-12-2012-0071","DOIUrl":null,"url":null,"abstract":"Purpose – The purpose of this paper is to develop a novel feature selection approach for automatic text classification of large digital documents – e-books of online library system. The main idea mainly aims on automatically identifying the discourse features in order to improving the feature selection process rather than focussing on the size of the corpus. Design/methodology/approach – The proposed framework intends to automatically identify the discourse segments within e-books and capture proper discourse subtopics that are cohesively expressed in discourse segments and treating these subtopics as informative and prominent features. The selected set of features is then used to train and perform the e-book classification task based on the support vector machine technique. Findings – The evaluation of the proposed framework shows that identifying discourse segments and capturing subtopic features leads to better performance, in comparison with two conventional feature selection techniques: TFIDF and mut...","PeriodicalId":49663,"journal":{"name":"Program-Electronic Library and Information Systems","volume":"49 1","pages":"2-22"},"PeriodicalIF":0.0000,"publicationDate":"2015-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1108/PROG-12-2012-0071","citationCount":"4","resultStr":"{\"title\":\"A feature selection approach for automatic e-book classification based on discourse segmentation\",\"authors\":\"Jiunn-Liang Guo, Hei-Chia Wang, Ming-Way Lai\",\"doi\":\"10.1108/PROG-12-2012-0071\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Purpose – The purpose of this paper is to develop a novel feature selection approach for automatic text classification of large digital documents – e-books of online library system. The main idea mainly aims on automatically identifying the discourse features in order to improving the feature selection process rather than focussing on the size of the corpus. Design/methodology/approach – The proposed framework intends to automatically identify the discourse segments within e-books and capture proper discourse subtopics that are cohesively expressed in discourse segments and treating these subtopics as informative and prominent features. The selected set of features is then used to train and perform the e-book classification task based on the support vector machine technique. Findings – The evaluation of the proposed framework shows that identifying discourse segments and capturing subtopic features leads to better performance, in comparison with two conventional feature selection techniques: TFIDF and mut...\",\"PeriodicalId\":49663,\"journal\":{\"name\":\"Program-Electronic Library and Information Systems\",\"volume\":\"49 1\",\"pages\":\"2-22\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-01-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1108/PROG-12-2012-0071\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Program-Electronic Library and Information Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1108/PROG-12-2012-0071\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q\",\"JCRName\":\"Social Sciences\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Program-Electronic Library and Information Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1108/PROG-12-2012-0071","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q","JCRName":"Social Sciences","Score":null,"Total":0}
引用次数: 4

摘要

目的:本文的目的是开发一种新的特征选择方法,用于在线图书馆系统的大型数字文档——电子书的自动文本分类。其主要思想是自动识别话语特征,以改进特征选择过程,而不是关注语料库的大小。设计/方法论/方法-建议的框架旨在自动识别电子书中的话语片段,并捕获在话语片段中紧密表达的适当话语子主题,并将这些子主题视为信息丰富和突出的特征。然后使用所选择的特征集来训练和执行基于支持向量机技术的电子书分类任务。研究结果-对所提出框架的评估表明,与两种传统的特征选择技术(TFIDF和mut)相比,识别话语片段和捕获子主题特征可以带来更好的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A feature selection approach for automatic e-book classification based on discourse segmentation
Purpose – The purpose of this paper is to develop a novel feature selection approach for automatic text classification of large digital documents – e-books of online library system. The main idea mainly aims on automatically identifying the discourse features in order to improving the feature selection process rather than focussing on the size of the corpus. Design/methodology/approach – The proposed framework intends to automatically identify the discourse segments within e-books and capture proper discourse subtopics that are cohesively expressed in discourse segments and treating these subtopics as informative and prominent features. The selected set of features is then used to train and perform the e-book classification task based on the support vector machine technique. Findings – The evaluation of the proposed framework shows that identifying discourse segments and capturing subtopic features leads to better performance, in comparison with two conventional feature selection techniques: TFIDF and mut...
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Program-Electronic Library and Information Systems
Program-Electronic Library and Information Systems 工程技术-计算机:信息系统
CiteScore
1.30
自引率
0.00%
发文量
0
审稿时长
>12 weeks
期刊介绍: ■Automation of library and information services ■Storage and retrieval of all forms of electronic information ■Delivery of information to end users ■Database design and management ■Techniques for storing and distributing information ■Networking and communications technology ■The Internet ■User interface design ■Procurement of systems ■User training and support ■System evaluation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信