通过自动跟踪暂态ST段参考水平,提前检测24小时动态心电数据中的ST段发作

A. Smrdel, F. Jager
{"title":"通过自动跟踪暂态ST段参考水平,提前检测24小时动态心电数据中的ST段发作","authors":"A. Smrdel, F. Jager","doi":"10.1109/CIC.2002.1166774","DOIUrl":null,"url":null,"abstract":"Using the Long-Term ST Database, we developed and evaluated an advanced algorithm for automated detection of transient ST segment episodes in \"real-world\" 24-hour ambulatory data. To successfully detect transient ST change episodes, the algorithm automatically tracks the time-varying ST segment reference level due to clinically not important non-ischemic causes and subtracts it from the ST segment level. Evaluating of the algorithm using reference annotations of the protocol B of the database yielded gross ST episode detection sensitivity and positive predictivity of approximately 75%.","PeriodicalId":80984,"journal":{"name":"Computers in cardiology","volume":"1 1","pages":"325-328"},"PeriodicalIF":0.0000,"publicationDate":"2002-09-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1109/CIC.2002.1166774","citationCount":"6","resultStr":"{\"title\":\"Advanced detection of ST segment episodes in 24-hour ambulatory ECG data by automated tracking of transient ST segment reference level\",\"authors\":\"A. Smrdel, F. Jager\",\"doi\":\"10.1109/CIC.2002.1166774\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Using the Long-Term ST Database, we developed and evaluated an advanced algorithm for automated detection of transient ST segment episodes in \\\"real-world\\\" 24-hour ambulatory data. To successfully detect transient ST change episodes, the algorithm automatically tracks the time-varying ST segment reference level due to clinically not important non-ischemic causes and subtracts it from the ST segment level. Evaluating of the algorithm using reference annotations of the protocol B of the database yielded gross ST episode detection sensitivity and positive predictivity of approximately 75%.\",\"PeriodicalId\":80984,\"journal\":{\"name\":\"Computers in cardiology\",\"volume\":\"1 1\",\"pages\":\"325-328\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2002-09-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1109/CIC.2002.1166774\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computers in cardiology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CIC.2002.1166774\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers in cardiology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CIC.2002.1166774","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

利用长期ST数据库,我们开发并评估了一种先进的算法,用于自动检测“现实世界”24小时动态数据中的瞬态ST段事件。为了成功检测瞬时ST段变化事件,该算法自动跟踪临床不重要的非缺血性原因引起的时变ST段参考水平,并从ST段水平中减去。使用数据库协议B的参考注释对算法进行评估,产生了大约75%的总ST集检测灵敏度和阳性预测。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Advanced detection of ST segment episodes in 24-hour ambulatory ECG data by automated tracking of transient ST segment reference level
Using the Long-Term ST Database, we developed and evaluated an advanced algorithm for automated detection of transient ST segment episodes in "real-world" 24-hour ambulatory data. To successfully detect transient ST change episodes, the algorithm automatically tracks the time-varying ST segment reference level due to clinically not important non-ischemic causes and subtracts it from the ST segment level. Evaluating of the algorithm using reference annotations of the protocol B of the database yielded gross ST episode detection sensitivity and positive predictivity of approximately 75%.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信