{"title":"花岗岩粉在M30级混凝土中部分替代水泥,使用IS 10262:2019","authors":"Sweety Poornima Rau Merugu, Manjunath Y.M.","doi":"10.1108/jsfe-02-2023-0019","DOIUrl":null,"url":null,"abstract":"PurposeThis study aims at designing consistent and durable concrete by making use of waste materials. An investigation has been carried out to evaluate the performance of conventional and optimal concrete (including 5% GP) at high temperatures for different exposure times.Design/methodology/approachAn experimental work is carried out to compare the conventional and optimal concrete with respect to weight loss, mechanical strength characteristics (compressive, tensile and flexural) after exposed to 100, 200 and 300 °C with 1, 2 and 3 h duration of exposure followed by cooling in furnace for 24 h and then air cooling.FindingsThe workability of granite powder modified concrete decreases as percentage of replacement increases. Compressive, tensile and flexural strengths all increased at 100 °C when compared to strength characteristics at normal temperature, regardless of the exposure conditions, and there was no weight loss noticed. For 200 and 300 °C, the strengths were decreased compared to normal temperature and an elevated temperature of 100 °C, as weight loss of concrete specimens are observed to be decreased at these temperatures. So, the optimum elevated temperature can be concluded as 100 °C.Originality/valueIncorporating pozzolanic binder (granite powder) as cement replacement subjecting to elevated temperatures in an electric furnace is the research gap in this area. Many of the works were carried out replacing GP for fine aggregate at normal temperatures and not at elevated temperatures.","PeriodicalId":45033,"journal":{"name":"Journal of Structural Fire Engineering","volume":"1 1","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2023-07-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Granite powder as partial replacement of cement in M30 grade concrete mix using IS 10262:2019\",\"authors\":\"Sweety Poornima Rau Merugu, Manjunath Y.M.\",\"doi\":\"10.1108/jsfe-02-2023-0019\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"PurposeThis study aims at designing consistent and durable concrete by making use of waste materials. An investigation has been carried out to evaluate the performance of conventional and optimal concrete (including 5% GP) at high temperatures for different exposure times.Design/methodology/approachAn experimental work is carried out to compare the conventional and optimal concrete with respect to weight loss, mechanical strength characteristics (compressive, tensile and flexural) after exposed to 100, 200 and 300 °C with 1, 2 and 3 h duration of exposure followed by cooling in furnace for 24 h and then air cooling.FindingsThe workability of granite powder modified concrete decreases as percentage of replacement increases. Compressive, tensile and flexural strengths all increased at 100 °C when compared to strength characteristics at normal temperature, regardless of the exposure conditions, and there was no weight loss noticed. For 200 and 300 °C, the strengths were decreased compared to normal temperature and an elevated temperature of 100 °C, as weight loss of concrete specimens are observed to be decreased at these temperatures. So, the optimum elevated temperature can be concluded as 100 °C.Originality/valueIncorporating pozzolanic binder (granite powder) as cement replacement subjecting to elevated temperatures in an electric furnace is the research gap in this area. Many of the works were carried out replacing GP for fine aggregate at normal temperatures and not at elevated temperatures.\",\"PeriodicalId\":45033,\"journal\":{\"name\":\"Journal of Structural Fire Engineering\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2023-07-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Structural Fire Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1108/jsfe-02-2023-0019\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"CONSTRUCTION & BUILDING TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Structural Fire Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1108/jsfe-02-2023-0019","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
Granite powder as partial replacement of cement in M30 grade concrete mix using IS 10262:2019
PurposeThis study aims at designing consistent and durable concrete by making use of waste materials. An investigation has been carried out to evaluate the performance of conventional and optimal concrete (including 5% GP) at high temperatures for different exposure times.Design/methodology/approachAn experimental work is carried out to compare the conventional and optimal concrete with respect to weight loss, mechanical strength characteristics (compressive, tensile and flexural) after exposed to 100, 200 and 300 °C with 1, 2 and 3 h duration of exposure followed by cooling in furnace for 24 h and then air cooling.FindingsThe workability of granite powder modified concrete decreases as percentage of replacement increases. Compressive, tensile and flexural strengths all increased at 100 °C when compared to strength characteristics at normal temperature, regardless of the exposure conditions, and there was no weight loss noticed. For 200 and 300 °C, the strengths were decreased compared to normal temperature and an elevated temperature of 100 °C, as weight loss of concrete specimens are observed to be decreased at these temperatures. So, the optimum elevated temperature can be concluded as 100 °C.Originality/valueIncorporating pozzolanic binder (granite powder) as cement replacement subjecting to elevated temperatures in an electric furnace is the research gap in this area. Many of the works were carried out replacing GP for fine aggregate at normal temperatures and not at elevated temperatures.