{"title":"基于GoldSim蒙特卡罗可靠性工作台的经典工业电机驱动可靠性研究","authors":"Raghavendra Rao N.S., C. A.","doi":"10.1108/cw-10-2022-0278","DOIUrl":null,"url":null,"abstract":"\nPurpose\nThe purpose of this study is to propose an extended reliability method for an industrial motor drive by integrating the physics of failure (PoF).\n\n\nDesign/methodology/approach\nIndustrial motor drive systems (IMDS) are currently expected to perform beyond the desired operating conditions to meet the demand. The PoF of the subsystem affects its reliability under such harsh operating circumstances. It is crucial to estimate reliability by integrating PoF, which helps in understanding its impact and to develop a fault-tolerant design, particularly in such an integrated drive system. An integrated PoF extended reliability method for industrial drive system is proposed to address this issue. In research, the numerical failure rate of each component of industrial drive is obtained first with the help of the MIL-HDBK-217 military handbook. Furthermore, the mathematically deduced proposed approach is modeled in the GoldSim Monte Carlo reliability workbench.\n\n\nFindings\nFrom the results, for a 15% rise in integrated PoF, the reliability and availability of the entire IMDS dropped by 23%, resulting in an impact on mean time to failure (MTTF).\n\n\nOriginality/value\nThe integrated PoF of the motor and motor controller affects industrial drive reliability, which falls to 0.18 with the least MTTF (2.27 years); whose overall reliability of industrial drive drops to 0.06 if it is additionally integrated with communication protocol.\n","PeriodicalId":50693,"journal":{"name":"Circuit World","volume":"1 1","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2023-08-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Investigation on reliability of classical industrial motor drives using GoldSim Monte Carlo reliability workbench\",\"authors\":\"Raghavendra Rao N.S., C. A.\",\"doi\":\"10.1108/cw-10-2022-0278\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\nPurpose\\nThe purpose of this study is to propose an extended reliability method for an industrial motor drive by integrating the physics of failure (PoF).\\n\\n\\nDesign/methodology/approach\\nIndustrial motor drive systems (IMDS) are currently expected to perform beyond the desired operating conditions to meet the demand. The PoF of the subsystem affects its reliability under such harsh operating circumstances. It is crucial to estimate reliability by integrating PoF, which helps in understanding its impact and to develop a fault-tolerant design, particularly in such an integrated drive system. An integrated PoF extended reliability method for industrial drive system is proposed to address this issue. In research, the numerical failure rate of each component of industrial drive is obtained first with the help of the MIL-HDBK-217 military handbook. Furthermore, the mathematically deduced proposed approach is modeled in the GoldSim Monte Carlo reliability workbench.\\n\\n\\nFindings\\nFrom the results, for a 15% rise in integrated PoF, the reliability and availability of the entire IMDS dropped by 23%, resulting in an impact on mean time to failure (MTTF).\\n\\n\\nOriginality/value\\nThe integrated PoF of the motor and motor controller affects industrial drive reliability, which falls to 0.18 with the least MTTF (2.27 years); whose overall reliability of industrial drive drops to 0.06 if it is additionally integrated with communication protocol.\\n\",\"PeriodicalId\":50693,\"journal\":{\"name\":\"Circuit World\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2023-08-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Circuit World\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1108/cw-10-2022-0278\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Circuit World","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1108/cw-10-2022-0278","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Investigation on reliability of classical industrial motor drives using GoldSim Monte Carlo reliability workbench
Purpose
The purpose of this study is to propose an extended reliability method for an industrial motor drive by integrating the physics of failure (PoF).
Design/methodology/approach
Industrial motor drive systems (IMDS) are currently expected to perform beyond the desired operating conditions to meet the demand. The PoF of the subsystem affects its reliability under such harsh operating circumstances. It is crucial to estimate reliability by integrating PoF, which helps in understanding its impact and to develop a fault-tolerant design, particularly in such an integrated drive system. An integrated PoF extended reliability method for industrial drive system is proposed to address this issue. In research, the numerical failure rate of each component of industrial drive is obtained first with the help of the MIL-HDBK-217 military handbook. Furthermore, the mathematically deduced proposed approach is modeled in the GoldSim Monte Carlo reliability workbench.
Findings
From the results, for a 15% rise in integrated PoF, the reliability and availability of the entire IMDS dropped by 23%, resulting in an impact on mean time to failure (MTTF).
Originality/value
The integrated PoF of the motor and motor controller affects industrial drive reliability, which falls to 0.18 with the least MTTF (2.27 years); whose overall reliability of industrial drive drops to 0.06 if it is additionally integrated with communication protocol.
期刊介绍:
Circuit World is a platform for state of the art, technical papers and editorials in the areas of electronics circuit, component, assembly, and product design, manufacture, test, and use, including quality, reliability and safety. The journal comprises the multidisciplinary study of the various theories, methodologies, technologies, processes and applications relating to todays and future electronics. Circuit World provides a comprehensive and authoritative information source for research, application and current awareness purposes.
Circuit World covers a broad range of topics, including:
• Circuit theory, design methodology, analysis and simulation
• Digital, analog, microwave and optoelectronic integrated circuits
• Semiconductors, passives, connectors and sensors
• Electronic packaging of components, assemblies and products
• PCB design technologies and processes (controlled impedance, high-speed PCBs, laminates and lamination, laser processes and drilling, moulded interconnect devices, multilayer boards, optical PCBs, single- and double-sided boards, soldering and solderable finishes)
• Design for X (including manufacturability, quality, reliability, maintainability, sustainment, safety, reuse, disposal)
• Internet of Things (IoT).