{"title":"用于估算建筑项目成本范围的机器学习回归","authors":"A. Gurmu, Mani Pourdadash Miri","doi":"10.1108/ci-08-2022-0197","DOIUrl":null,"url":null,"abstract":"\nPurpose\nSeveral factors influence the costs of buildings. Thus, identifying the cost significant factors can assist to improve the accuracy of project cost forecasts during the planning phase. This paper aims to identify the cost significant parameters and explore the potential for improving the accuracy of cost forecasts for buildings using machine learning techniques and large data sets.\n\n\nDesign/methodology/approach\nThe Australian State of Victoria Building Authority data sets, which comprise various parameters such as cost of the buildings, materials used, gross floor areas (GFA) and type of buildings, have been used. Five different machine learning regression models, such as decision tree, linear regression, random forest, gradient boosting and k-nearest neighbor were used.\n\n\nFindings\nThe findings of the study showed that among the chosen models, linear regression provided the worst outcome (r2 = 0.38) while decision tree (r2 = 0.66) and gradient boosting (r2 = 0.62) provided the best outcome. Among the analyzed features, the class of buildings explained about 34% of the variations, followed by GFA and walls, which both accounted for 26% of the variations.\n\n\nOriginality/value\nThe output of this research can provide important information regarding the factors that have major impacts on the costs of buildings in the Australian construction industry. The study revealed that the cost of buildings is highly influenced by their classes.\n","PeriodicalId":45580,"journal":{"name":"Construction Innovation-England","volume":"1 1","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2023-06-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Machine learning regression for estimating the cost range of building projects\",\"authors\":\"A. Gurmu, Mani Pourdadash Miri\",\"doi\":\"10.1108/ci-08-2022-0197\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\nPurpose\\nSeveral factors influence the costs of buildings. Thus, identifying the cost significant factors can assist to improve the accuracy of project cost forecasts during the planning phase. This paper aims to identify the cost significant parameters and explore the potential for improving the accuracy of cost forecasts for buildings using machine learning techniques and large data sets.\\n\\n\\nDesign/methodology/approach\\nThe Australian State of Victoria Building Authority data sets, which comprise various parameters such as cost of the buildings, materials used, gross floor areas (GFA) and type of buildings, have been used. Five different machine learning regression models, such as decision tree, linear regression, random forest, gradient boosting and k-nearest neighbor were used.\\n\\n\\nFindings\\nThe findings of the study showed that among the chosen models, linear regression provided the worst outcome (r2 = 0.38) while decision tree (r2 = 0.66) and gradient boosting (r2 = 0.62) provided the best outcome. Among the analyzed features, the class of buildings explained about 34% of the variations, followed by GFA and walls, which both accounted for 26% of the variations.\\n\\n\\nOriginality/value\\nThe output of this research can provide important information regarding the factors that have major impacts on the costs of buildings in the Australian construction industry. The study revealed that the cost of buildings is highly influenced by their classes.\\n\",\"PeriodicalId\":45580,\"journal\":{\"name\":\"Construction Innovation-England\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2023-06-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Construction Innovation-England\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1108/ci-08-2022-0197\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CONSTRUCTION & BUILDING TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Construction Innovation-England","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1108/ci-08-2022-0197","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
Machine learning regression for estimating the cost range of building projects
Purpose
Several factors influence the costs of buildings. Thus, identifying the cost significant factors can assist to improve the accuracy of project cost forecasts during the planning phase. This paper aims to identify the cost significant parameters and explore the potential for improving the accuracy of cost forecasts for buildings using machine learning techniques and large data sets.
Design/methodology/approach
The Australian State of Victoria Building Authority data sets, which comprise various parameters such as cost of the buildings, materials used, gross floor areas (GFA) and type of buildings, have been used. Five different machine learning regression models, such as decision tree, linear regression, random forest, gradient boosting and k-nearest neighbor were used.
Findings
The findings of the study showed that among the chosen models, linear regression provided the worst outcome (r2 = 0.38) while decision tree (r2 = 0.66) and gradient boosting (r2 = 0.62) provided the best outcome. Among the analyzed features, the class of buildings explained about 34% of the variations, followed by GFA and walls, which both accounted for 26% of the variations.
Originality/value
The output of this research can provide important information regarding the factors that have major impacts on the costs of buildings in the Australian construction industry. The study revealed that the cost of buildings is highly influenced by their classes.