Ashbey N Manning, Claire E Rowlands, Hope Saindon, Brittany E Givens
{"title":"调节乳液性质会影响用于药物递送应用的聚(己内酯)颗粒的尺寸。","authors":"Ashbey N Manning, Claire E Rowlands, Hope Saindon, Brittany E Givens","doi":"10.1208/s12248-023-00869-4","DOIUrl":null,"url":null,"abstract":"<p><p>Advances in drug delivery have been accelerated with the addition of polymeric drug carriers. Direct delivery to a target site is a promising step in developing effective drug and gene therapies to treat disease. The efficacy of these drug carriers heavily relies on cell uptake without compromising critical cellular processes that promote cell viability. Drug release from biodegradable polymers is mediated largely by polymer degradation, and therefore the rate of polymer degradation dictates the feasibility of drug delivery applications. Traditionally, poly(caprolactone) (PCL) has only been used in long-term biomedical applications because the degradation time is much slower than other polymers. However, the biocompatibility of this polymer and the potential for longer delivery windows renders it a promising polymer candidate for drug delivery. In this work, we outline sixteen emulsion solvent evaporation preparation methods for PCL nanoparticles and microparticles to develop particles between 300 nm and 1.7 μm and with zeta potentials of -1.8 mV. We further investigated particles in a size range suitable for systemic tumor delivery and inhaled aerosol delivery to determine cell biocompatibility with the polymer in lung adenocarcinoma, endometrial adenocarcinoma, and human embryonic kidney cells. We determined these particles aren't detrimental to cell viability below particle monolayer coverage atop cells and therefore these formulations hold promise for the next stage of development as sustained-release drug delivery carriers.</p>","PeriodicalId":50934,"journal":{"name":"AAPS Journal","volume":null,"pages":null},"PeriodicalIF":5.0000,"publicationDate":"2023-10-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Tuning the Emulsion Properties Influences the Size of Poly(Caprolactone) Particles for Drug Delivery Applications.\",\"authors\":\"Ashbey N Manning, Claire E Rowlands, Hope Saindon, Brittany E Givens\",\"doi\":\"10.1208/s12248-023-00869-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Advances in drug delivery have been accelerated with the addition of polymeric drug carriers. Direct delivery to a target site is a promising step in developing effective drug and gene therapies to treat disease. The efficacy of these drug carriers heavily relies on cell uptake without compromising critical cellular processes that promote cell viability. Drug release from biodegradable polymers is mediated largely by polymer degradation, and therefore the rate of polymer degradation dictates the feasibility of drug delivery applications. Traditionally, poly(caprolactone) (PCL) has only been used in long-term biomedical applications because the degradation time is much slower than other polymers. However, the biocompatibility of this polymer and the potential for longer delivery windows renders it a promising polymer candidate for drug delivery. In this work, we outline sixteen emulsion solvent evaporation preparation methods for PCL nanoparticles and microparticles to develop particles between 300 nm and 1.7 μm and with zeta potentials of -1.8 mV. We further investigated particles in a size range suitable for systemic tumor delivery and inhaled aerosol delivery to determine cell biocompatibility with the polymer in lung adenocarcinoma, endometrial adenocarcinoma, and human embryonic kidney cells. We determined these particles aren't detrimental to cell viability below particle monolayer coverage atop cells and therefore these formulations hold promise for the next stage of development as sustained-release drug delivery carriers.</p>\",\"PeriodicalId\":50934,\"journal\":{\"name\":\"AAPS Journal\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.0000,\"publicationDate\":\"2023-10-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"AAPS Journal\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1208/s12248-023-00869-4\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHARMACOLOGY & PHARMACY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"AAPS Journal","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1208/s12248-023-00869-4","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
Tuning the Emulsion Properties Influences the Size of Poly(Caprolactone) Particles for Drug Delivery Applications.
Advances in drug delivery have been accelerated with the addition of polymeric drug carriers. Direct delivery to a target site is a promising step in developing effective drug and gene therapies to treat disease. The efficacy of these drug carriers heavily relies on cell uptake without compromising critical cellular processes that promote cell viability. Drug release from biodegradable polymers is mediated largely by polymer degradation, and therefore the rate of polymer degradation dictates the feasibility of drug delivery applications. Traditionally, poly(caprolactone) (PCL) has only been used in long-term biomedical applications because the degradation time is much slower than other polymers. However, the biocompatibility of this polymer and the potential for longer delivery windows renders it a promising polymer candidate for drug delivery. In this work, we outline sixteen emulsion solvent evaporation preparation methods for PCL nanoparticles and microparticles to develop particles between 300 nm and 1.7 μm and with zeta potentials of -1.8 mV. We further investigated particles in a size range suitable for systemic tumor delivery and inhaled aerosol delivery to determine cell biocompatibility with the polymer in lung adenocarcinoma, endometrial adenocarcinoma, and human embryonic kidney cells. We determined these particles aren't detrimental to cell viability below particle monolayer coverage atop cells and therefore these formulations hold promise for the next stage of development as sustained-release drug delivery carriers.
期刊介绍:
The AAPS Journal, an official journal of the American Association of Pharmaceutical Scientists (AAPS), publishes novel and significant findings in the various areas of pharmaceutical sciences impacting human and veterinary therapeutics, including:
· Drug Design and Discovery
· Pharmaceutical Biotechnology
· Biopharmaceutics, Formulation, and Drug Delivery
· Metabolism and Transport
· Pharmacokinetics, Pharmacodynamics, and Pharmacometrics
· Translational Research
· Clinical Evaluations and Therapeutic Outcomes
· Regulatory Science
We invite submissions under the following article types:
· Original Research Articles
· Reviews and Mini-reviews
· White Papers, Commentaries, and Editorials
· Meeting Reports
· Brief/Technical Reports and Rapid Communications
· Regulatory Notes
· Tutorials
· Protocols in the Pharmaceutical Sciences
In addition, The AAPS Journal publishes themes, organized by guest editors, which are focused on particular areas of current interest to our field.