计算基因调控网络的最小布尔模型。

IF 1.4 4区 生物学 Q4 BIOCHEMICAL RESEARCH METHODS
Journal of Computational Biology Pub Date : 2024-02-01 Epub Date: 2023-10-27 DOI:10.1089/cmb.2023.0122
Guy Karlebach, Peter N Robinson
{"title":"计算基因调控网络的最小布尔模型。","authors":"Guy Karlebach, Peter N Robinson","doi":"10.1089/cmb.2023.0122","DOIUrl":null,"url":null,"abstract":"<p><p>Models of gene regulatory networks (GRNs) capture the dynamics of the regulatory processes that occur within the cell as a means to understanding the variability observed in gene expression between different conditions. Arguably the simplest mathematical construct used for modeling is the Boolean network, which dictates a set of logical rules for transition between states described as Boolean vectors. Due to the complexity of gene regulation and the limitations of experimental technologies, in most cases knowledge about regulatory interactions and Boolean states is partial. In addition, the logical rules themselves are not known a priori. Our goal in this work is to create an algorithm that finds the network that fits the data optimally, and identify the network states that correspond to the noise-free data. We present a novel methodology for integrating experimental data and performing a search for the optimal consistent structure via optimization of a linear objective function under a set of linear constraints. In addition, we extend our methodology into a heuristic that alleviates the computational complexity of the problem for datasets that are generated by single-cell RNA-Sequencing (scRNA-Seq). We demonstrate the effectiveness of these tools using simulated data, and in addition a publicly available scRNA-Seq dataset and the GRN that is associated with it. Our methodology will enable researchers to obtain a better understanding of the dynamics of GRNs and their biological role.</p>","PeriodicalId":15526,"journal":{"name":"Journal of Computational Biology","volume":" ","pages":"117-127"},"PeriodicalIF":1.4000,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Computing Minimal Boolean Models of Gene Regulatory Networks.\",\"authors\":\"Guy Karlebach, Peter N Robinson\",\"doi\":\"10.1089/cmb.2023.0122\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Models of gene regulatory networks (GRNs) capture the dynamics of the regulatory processes that occur within the cell as a means to understanding the variability observed in gene expression between different conditions. Arguably the simplest mathematical construct used for modeling is the Boolean network, which dictates a set of logical rules for transition between states described as Boolean vectors. Due to the complexity of gene regulation and the limitations of experimental technologies, in most cases knowledge about regulatory interactions and Boolean states is partial. In addition, the logical rules themselves are not known a priori. Our goal in this work is to create an algorithm that finds the network that fits the data optimally, and identify the network states that correspond to the noise-free data. We present a novel methodology for integrating experimental data and performing a search for the optimal consistent structure via optimization of a linear objective function under a set of linear constraints. In addition, we extend our methodology into a heuristic that alleviates the computational complexity of the problem for datasets that are generated by single-cell RNA-Sequencing (scRNA-Seq). We demonstrate the effectiveness of these tools using simulated data, and in addition a publicly available scRNA-Seq dataset and the GRN that is associated with it. Our methodology will enable researchers to obtain a better understanding of the dynamics of GRNs and their biological role.</p>\",\"PeriodicalId\":15526,\"journal\":{\"name\":\"Journal of Computational Biology\",\"volume\":\" \",\"pages\":\"117-127\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2024-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Computational Biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1089/cmb.2023.0122\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/10/27 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q4\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computational Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1089/cmb.2023.0122","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/10/27 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

摘要

基因调控网络(GRN)模型捕捉细胞内发生的调控过程的动力学,作为理解不同条件下观察到的基因表达变异性的一种手段。可以说,用于建模的最简单的数学结构是布尔网络,它规定了一组逻辑规则,用于在被描述为布尔向量的状态之间转换。由于基因调控的复杂性和实验技术的局限性,在大多数情况下,关于调控相互作用和布尔状态的知识是部分的。此外,逻辑规则本身并不是先验已知的。我们在这项工作中的目标是创建一种算法,找到最适合数据的网络,并识别与无噪声数据相对应的网络状态。我们提出了一种新的方法,用于集成实验数据,并通过在一组线性约束下优化线性目标函数来搜索最优一致结构。此外,我们将我们的方法扩展为启发式方法,以减轻单细胞RNA测序(scRNA-Seq)生成的数据集的计算复杂性。我们使用模拟数据以及公开的scRNA-Seq数据集和与之相关的GRN来证明这些工具的有效性。我们的方法将使研究人员能够更好地了解GRN的动力学及其生物学作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Computing Minimal Boolean Models of Gene Regulatory Networks.

Models of gene regulatory networks (GRNs) capture the dynamics of the regulatory processes that occur within the cell as a means to understanding the variability observed in gene expression between different conditions. Arguably the simplest mathematical construct used for modeling is the Boolean network, which dictates a set of logical rules for transition between states described as Boolean vectors. Due to the complexity of gene regulation and the limitations of experimental technologies, in most cases knowledge about regulatory interactions and Boolean states is partial. In addition, the logical rules themselves are not known a priori. Our goal in this work is to create an algorithm that finds the network that fits the data optimally, and identify the network states that correspond to the noise-free data. We present a novel methodology for integrating experimental data and performing a search for the optimal consistent structure via optimization of a linear objective function under a set of linear constraints. In addition, we extend our methodology into a heuristic that alleviates the computational complexity of the problem for datasets that are generated by single-cell RNA-Sequencing (scRNA-Seq). We demonstrate the effectiveness of these tools using simulated data, and in addition a publicly available scRNA-Seq dataset and the GRN that is associated with it. Our methodology will enable researchers to obtain a better understanding of the dynamics of GRNs and their biological role.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Computational Biology
Journal of Computational Biology 生物-计算机:跨学科应用
CiteScore
3.60
自引率
5.90%
发文量
113
审稿时长
6-12 weeks
期刊介绍: Journal of Computational Biology is the leading peer-reviewed journal in computational biology and bioinformatics, publishing in-depth statistical, mathematical, and computational analysis of methods, as well as their practical impact. Available only online, this is an essential journal for scientists and students who want to keep abreast of developments in bioinformatics. Journal of Computational Biology coverage includes: -Genomics -Mathematical modeling and simulation -Distributed and parallel biological computing -Designing biological databases -Pattern matching and pattern detection -Linking disparate databases and data -New tools for computational biology -Relational and object-oriented database technology for bioinformatics -Biological expert system design and use -Reasoning by analogy, hypothesis formation, and testing by machine -Management of biological databases
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信