Cristian Suarez , Jonathan D. Winkelman , Alyssa J. Harker , Hannah J. Ye , Patrick M. McCall , Alisha N. Morganthaler , Margaret L. Gardel , David R. Kovar
{"title":"用纯化的蛋白质重建从片状到丝状肌动蛋白网络的转变。","authors":"Cristian Suarez , Jonathan D. Winkelman , Alyssa J. Harker , Hannah J. Ye , Patrick M. McCall , Alisha N. Morganthaler , Margaret L. Gardel , David R. Kovar","doi":"10.1016/j.ejcb.2023.151367","DOIUrl":null,"url":null,"abstract":"<div><p>How cells utilize complex mixtures of actin binding proteins to assemble and maintain functionally diverse actin filament networks with distinct architectures and dynamics within a common cytoplasm is a longstanding question in cell biology. A compelling example of complex and specialized actin structures in cells are filopodia which sense extracellular chemical and mechanical signals to help steer motile cells. Filopodia have distinct actin architecture, composed of long, parallel actin filaments bundled by fascin, which form finger-like membrane protrusions. Elongation of the parallel actin filaments in filopodia can be mediated by two processive actin filament elongation factors, formin and Ena/VASP, which localize to the tips of filopodia. There remains debate as to how the architecture of filopodia are generated, with one hypothesis proposing that filopodia are generated from the lamellipodia, which consists of densely packed, branched actin filaments nucleated by Arp2/3 complex and kept short by capping protein. It remains unclear if different actin filament elongation factors are necessary and sufficient to facilitate the emergence of filopodia with diverse characteristics from a highly dense network of short-branched capped filaments. To address this question, we combined bead motility and micropatterning biomimetic assays with multi-color Total Internal Reflection Fluorescence microscopy imaging, to successfully reconstitute the formation of filopodia-like networks (FLN) from densely-branched lamellipodia-like networks (LLN) with eight purified proteins (actin, profilin, Arp2/3 complex, Wasp pWA, fascin, capping protein, VASP and formin mDia2). Saturating capping protein concentrations inhibit FLN assembly, but the addition of either formin or Ena/VASP differentially rescues the formation of FLN from LLN. Specifically, we found that formin/mDia2-generated FLNs are relatively long and lack capping protein, whereas VASP-generated FLNs are comparatively short and contain capping protein, indicating that the actin elongation factor can affect the architecture and composition of FLN emerging from LLN. Our biomimetic reconstitution systems reveal that formin or VASP are necessary and sufficient to induce the transition from a LLN to a FLN, and establish robust in vitro platforms to investigate FLN assembly mechanisms.</p></div>","PeriodicalId":12010,"journal":{"name":"European journal of cell biology","volume":"102 4","pages":"Article 151367"},"PeriodicalIF":4.5000,"publicationDate":"2023-10-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0171933523000821/pdfft?md5=6a99bbcd2270f18ccb094c1286e9b991&pid=1-s2.0-S0171933523000821-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Reconstitution of the transition from a lamellipodia- to filopodia-like actin network with purified proteins\",\"authors\":\"Cristian Suarez , Jonathan D. Winkelman , Alyssa J. Harker , Hannah J. Ye , Patrick M. McCall , Alisha N. Morganthaler , Margaret L. Gardel , David R. Kovar\",\"doi\":\"10.1016/j.ejcb.2023.151367\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>How cells utilize complex mixtures of actin binding proteins to assemble and maintain functionally diverse actin filament networks with distinct architectures and dynamics within a common cytoplasm is a longstanding question in cell biology. A compelling example of complex and specialized actin structures in cells are filopodia which sense extracellular chemical and mechanical signals to help steer motile cells. Filopodia have distinct actin architecture, composed of long, parallel actin filaments bundled by fascin, which form finger-like membrane protrusions. Elongation of the parallel actin filaments in filopodia can be mediated by two processive actin filament elongation factors, formin and Ena/VASP, which localize to the tips of filopodia. There remains debate as to how the architecture of filopodia are generated, with one hypothesis proposing that filopodia are generated from the lamellipodia, which consists of densely packed, branched actin filaments nucleated by Arp2/3 complex and kept short by capping protein. It remains unclear if different actin filament elongation factors are necessary and sufficient to facilitate the emergence of filopodia with diverse characteristics from a highly dense network of short-branched capped filaments. To address this question, we combined bead motility and micropatterning biomimetic assays with multi-color Total Internal Reflection Fluorescence microscopy imaging, to successfully reconstitute the formation of filopodia-like networks (FLN) from densely-branched lamellipodia-like networks (LLN) with eight purified proteins (actin, profilin, Arp2/3 complex, Wasp pWA, fascin, capping protein, VASP and formin mDia2). Saturating capping protein concentrations inhibit FLN assembly, but the addition of either formin or Ena/VASP differentially rescues the formation of FLN from LLN. Specifically, we found that formin/mDia2-generated FLNs are relatively long and lack capping protein, whereas VASP-generated FLNs are comparatively short and contain capping protein, indicating that the actin elongation factor can affect the architecture and composition of FLN emerging from LLN. Our biomimetic reconstitution systems reveal that formin or VASP are necessary and sufficient to induce the transition from a LLN to a FLN, and establish robust in vitro platforms to investigate FLN assembly mechanisms.</p></div>\",\"PeriodicalId\":12010,\"journal\":{\"name\":\"European journal of cell biology\",\"volume\":\"102 4\",\"pages\":\"Article 151367\"},\"PeriodicalIF\":4.5000,\"publicationDate\":\"2023-10-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0171933523000821/pdfft?md5=6a99bbcd2270f18ccb094c1286e9b991&pid=1-s2.0-S0171933523000821-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"European journal of cell biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0171933523000821\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"European journal of cell biology","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0171933523000821","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
Reconstitution of the transition from a lamellipodia- to filopodia-like actin network with purified proteins
How cells utilize complex mixtures of actin binding proteins to assemble and maintain functionally diverse actin filament networks with distinct architectures and dynamics within a common cytoplasm is a longstanding question in cell biology. A compelling example of complex and specialized actin structures in cells are filopodia which sense extracellular chemical and mechanical signals to help steer motile cells. Filopodia have distinct actin architecture, composed of long, parallel actin filaments bundled by fascin, which form finger-like membrane protrusions. Elongation of the parallel actin filaments in filopodia can be mediated by two processive actin filament elongation factors, formin and Ena/VASP, which localize to the tips of filopodia. There remains debate as to how the architecture of filopodia are generated, with one hypothesis proposing that filopodia are generated from the lamellipodia, which consists of densely packed, branched actin filaments nucleated by Arp2/3 complex and kept short by capping protein. It remains unclear if different actin filament elongation factors are necessary and sufficient to facilitate the emergence of filopodia with diverse characteristics from a highly dense network of short-branched capped filaments. To address this question, we combined bead motility and micropatterning biomimetic assays with multi-color Total Internal Reflection Fluorescence microscopy imaging, to successfully reconstitute the formation of filopodia-like networks (FLN) from densely-branched lamellipodia-like networks (LLN) with eight purified proteins (actin, profilin, Arp2/3 complex, Wasp pWA, fascin, capping protein, VASP and formin mDia2). Saturating capping protein concentrations inhibit FLN assembly, but the addition of either formin or Ena/VASP differentially rescues the formation of FLN from LLN. Specifically, we found that formin/mDia2-generated FLNs are relatively long and lack capping protein, whereas VASP-generated FLNs are comparatively short and contain capping protein, indicating that the actin elongation factor can affect the architecture and composition of FLN emerging from LLN. Our biomimetic reconstitution systems reveal that formin or VASP are necessary and sufficient to induce the transition from a LLN to a FLN, and establish robust in vitro platforms to investigate FLN assembly mechanisms.
期刊介绍:
The European Journal of Cell Biology, a journal of experimental cell investigation, publishes reviews, original articles and short communications on the structure, function and macromolecular organization of cells and cell components. Contributions focusing on cellular dynamics, motility and differentiation, particularly if related to cellular biochemistry, molecular biology, immunology, neurobiology, and developmental biology are encouraged. Manuscripts describing significant technical advances are also welcome. In addition, papers dealing with biomedical issues of general interest to cell biologists will be published. Contributions addressing cell biological problems in prokaryotes and plants are also welcome.