具有粘性阻尼边界的有限杆的支承运动

IF 1.5 4区 工程技术 Q3 MECHANICS
Jeng-Tzong Chen, Hao-Chen Kao, Jia-Wei Lee, Ying-Te Lee
{"title":"具有粘性阻尼边界的有限杆的支承运动","authors":"Jeng-Tzong Chen, Hao-Chen Kao, Jia-Wei Lee, Ying-Te Lee","doi":"10.1093/jom/ufac035","DOIUrl":null,"url":null,"abstract":"In this paper, we extended the previous experience to solve the vibration problem of a finite bar with a viscously damped boundary and the support motion on the other side. Two analytical methods, the mode superposition method in conjunction with the quasi-static decomposition method and the method of diamond rule based on the method of characteristics, were employed to derive two analytical solutions. One is a series solution by using the mode superposition method. The other is an exact solution by using the method of diamond rule. The non-conservative system with an external damper is solved straightforward by using the method of diamond rule to avoid the complex-valued eigen system. Agreement is made well. Both advantages and disadvantages of two methods were discussed.","PeriodicalId":50136,"journal":{"name":"Journal of Mechanics","volume":null,"pages":null},"PeriodicalIF":1.5000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Support motion of a finite bar with a viscously damped boundary\",\"authors\":\"Jeng-Tzong Chen, Hao-Chen Kao, Jia-Wei Lee, Ying-Te Lee\",\"doi\":\"10.1093/jom/ufac035\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we extended the previous experience to solve the vibration problem of a finite bar with a viscously damped boundary and the support motion on the other side. Two analytical methods, the mode superposition method in conjunction with the quasi-static decomposition method and the method of diamond rule based on the method of characteristics, were employed to derive two analytical solutions. One is a series solution by using the mode superposition method. The other is an exact solution by using the method of diamond rule. The non-conservative system with an external damper is solved straightforward by using the method of diamond rule to avoid the complex-valued eigen system. Agreement is made well. Both advantages and disadvantages of two methods were discussed.\",\"PeriodicalId\":50136,\"journal\":{\"name\":\"Journal of Mechanics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Mechanics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1093/jom/ufac035\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MECHANICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mechanics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1093/jom/ufac035","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0

摘要

本文将以往的经验推广到具有粘滞阻尼边界和另一侧支承运动的有限杆的振动问题。采用模态叠加法结合准静态分解法和基于特征法的金刚石规则法两种解析方法,推导出两种解析解。一种是用模态叠加法求级数解。另一种是用菱形法则求精确解。采用金刚石法则的方法直接求解了带有外阻尼器的非保守系统,避免了复值本征系统。协议达成得很好。讨论了两种方法的优缺点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Support motion of a finite bar with a viscously damped boundary
In this paper, we extended the previous experience to solve the vibration problem of a finite bar with a viscously damped boundary and the support motion on the other side. Two analytical methods, the mode superposition method in conjunction with the quasi-static decomposition method and the method of diamond rule based on the method of characteristics, were employed to derive two analytical solutions. One is a series solution by using the mode superposition method. The other is an exact solution by using the method of diamond rule. The non-conservative system with an external damper is solved straightforward by using the method of diamond rule to avoid the complex-valued eigen system. Agreement is made well. Both advantages and disadvantages of two methods were discussed.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Mechanics
Journal of Mechanics 物理-力学
CiteScore
3.20
自引率
11.80%
发文量
20
审稿时长
6 months
期刊介绍: The objective of the Journal of Mechanics is to provide an international forum to foster exchange of ideas among mechanics communities in different parts of world. The Journal of Mechanics publishes original research in all fields of theoretical and applied mechanics. The Journal especially welcomes papers that are related to recent technological advances. The contributions, which may be analytical, experimental or numerical, should be of significance to the progress of mechanics. Papers which are merely illustrations of established principles and procedures will generally not be accepted. Reports that are of technical interest are published as short articles. Review articles are published only by invitation.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信