Kendrick M. Shepherd, X. Gu, R. Hiemstra, T. Hughes
{"title":"利用积分曲线的等价类生成和优化四边形布局:有边界曲面的理论和应用","authors":"Kendrick M. Shepherd, X. Gu, R. Hiemstra, T. Hughes","doi":"10.1093/jom/ufac002","DOIUrl":null,"url":null,"abstract":"Extracting quadrilateral layouts from surface triangulations is an important step in texture mapping, semi-structured quadrilateral meshing for traditional analysis and spline reconstruction for isogeometric analysis. Current methods struggle to yield high-quality layouts with appropriate connectivity between singular nodes (known as “extraordinary points” for spline representations) without resorting to either mixed-integer optimization or manual constraint prescription. The first of these is computationally expensive and comes with no guarantees, while the second is laborious and error-prone. In this work, we rigorously characterize curves in a quadrilateral layout up to homotopy type and use this information to quickly define high-quality connectivity constraints between singular nodes. The mathematical theory is accompanied by appropriate computational algorithms. The efficacy of the proposed method is demonstrated in generating quadrilateral layouts on the United States Army’s DEVCOM Generic Hull vehicle and parts of a bilinear quadrilateral finite element mesh (with some linear triangles) of a 1996 Dodge Neon.","PeriodicalId":50136,"journal":{"name":"Journal of Mechanics","volume":null,"pages":null},"PeriodicalIF":1.5000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Quadrilateral layout generation and optimization using equivalence classes of integral curves: theory and application to surfaces with boundaries\",\"authors\":\"Kendrick M. Shepherd, X. Gu, R. Hiemstra, T. Hughes\",\"doi\":\"10.1093/jom/ufac002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Extracting quadrilateral layouts from surface triangulations is an important step in texture mapping, semi-structured quadrilateral meshing for traditional analysis and spline reconstruction for isogeometric analysis. Current methods struggle to yield high-quality layouts with appropriate connectivity between singular nodes (known as “extraordinary points” for spline representations) without resorting to either mixed-integer optimization or manual constraint prescription. The first of these is computationally expensive and comes with no guarantees, while the second is laborious and error-prone. In this work, we rigorously characterize curves in a quadrilateral layout up to homotopy type and use this information to quickly define high-quality connectivity constraints between singular nodes. The mathematical theory is accompanied by appropriate computational algorithms. The efficacy of the proposed method is demonstrated in generating quadrilateral layouts on the United States Army’s DEVCOM Generic Hull vehicle and parts of a bilinear quadrilateral finite element mesh (with some linear triangles) of a 1996 Dodge Neon.\",\"PeriodicalId\":50136,\"journal\":{\"name\":\"Journal of Mechanics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Mechanics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1093/jom/ufac002\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MECHANICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mechanics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1093/jom/ufac002","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MECHANICS","Score":null,"Total":0}
Quadrilateral layout generation and optimization using equivalence classes of integral curves: theory and application to surfaces with boundaries
Extracting quadrilateral layouts from surface triangulations is an important step in texture mapping, semi-structured quadrilateral meshing for traditional analysis and spline reconstruction for isogeometric analysis. Current methods struggle to yield high-quality layouts with appropriate connectivity between singular nodes (known as “extraordinary points” for spline representations) without resorting to either mixed-integer optimization or manual constraint prescription. The first of these is computationally expensive and comes with no guarantees, while the second is laborious and error-prone. In this work, we rigorously characterize curves in a quadrilateral layout up to homotopy type and use this information to quickly define high-quality connectivity constraints between singular nodes. The mathematical theory is accompanied by appropriate computational algorithms. The efficacy of the proposed method is demonstrated in generating quadrilateral layouts on the United States Army’s DEVCOM Generic Hull vehicle and parts of a bilinear quadrilateral finite element mesh (with some linear triangles) of a 1996 Dodge Neon.
期刊介绍:
The objective of the Journal of Mechanics is to provide an international forum to foster exchange of ideas among mechanics communities in different parts of world. The Journal of Mechanics publishes original research in all fields of theoretical and applied mechanics. The Journal especially welcomes papers that are related to recent technological advances. The contributions, which may be analytical, experimental or numerical, should be of significance to the progress of mechanics. Papers which are merely illustrations of established principles and procedures will generally not be accepted. Reports that are of technical interest are published as short articles. Review articles are published only by invitation.