心肌细胞的DNA修复对于维持小鼠心脏功能至关重要

IF 8 1区 医学 Q1 CELL BIOLOGY
Aging Cell Pub Date : 2023-02-08 DOI:10.1111/acel.13768
Martine de Boer, Maaike te Lintel?Hekkert, Jiang Chang, Bibi S. van Thiel, Leonie Martens, Maxime M. Bos, Marion G. J. de Kleijnen, Yanto Ridwan, Yanti Octavia, Elza D. van Deel, Lau A. Blonden, Renata M. C. Brandt, Sander Barnhoorn, Paula K. Bautista-Ni?o, Ilona Krabbendam-Peters, Rianne Wolswinkel, Banafsheh Arshi, Mohsen Ghanbari, Christian Kupatt, Leon J. de Windt, A. H. Jan Danser, Ingrid van der Pluijm, Carol?Ann Remme, Monika Stoll, Joris Pothof, Anton J. M. Roks, Maryam Kavousi, Jeroen Essers, Jolanda van der Velden, Jan H. J. Hoeijmakers, Dirk J. Duncker
{"title":"心肌细胞的DNA修复对于维持小鼠心脏功能至关重要","authors":"Martine de Boer,&nbsp;Maaike te Lintel?Hekkert,&nbsp;Jiang Chang,&nbsp;Bibi S. van Thiel,&nbsp;Leonie Martens,&nbsp;Maxime M. Bos,&nbsp;Marion G. J. de Kleijnen,&nbsp;Yanto Ridwan,&nbsp;Yanti Octavia,&nbsp;Elza D. van Deel,&nbsp;Lau A. Blonden,&nbsp;Renata M. C. Brandt,&nbsp;Sander Barnhoorn,&nbsp;Paula K. Bautista-Ni?o,&nbsp;Ilona Krabbendam-Peters,&nbsp;Rianne Wolswinkel,&nbsp;Banafsheh Arshi,&nbsp;Mohsen Ghanbari,&nbsp;Christian Kupatt,&nbsp;Leon J. de Windt,&nbsp;A. H. Jan Danser,&nbsp;Ingrid van der Pluijm,&nbsp;Carol?Ann Remme,&nbsp;Monika Stoll,&nbsp;Joris Pothof,&nbsp;Anton J. M. Roks,&nbsp;Maryam Kavousi,&nbsp;Jeroen Essers,&nbsp;Jolanda van der Velden,&nbsp;Jan H. J. Hoeijmakers,&nbsp;Dirk J. Duncker","doi":"10.1111/acel.13768","DOIUrl":null,"url":null,"abstract":"<p>Heart failure has reached epidemic proportions in a progressively ageing population. The molecular mechanisms underlying heart failure remain elusive, but evidence indicates that DNA damage is enhanced in failing hearts. Here, we tested the hypothesis that endogenous DNA repair in cardiomyocytes is critical for maintaining normal cardiac function, so that perturbed repair of spontaneous DNA damage drives early onset of heart failure. To increase the burden of spontaneous DNA damage, we knocked out the DNA repair endonucleases xeroderma pigmentosum complementation group G (XPG) and excision repair cross-complementation group 1 (ERCC1), either systemically or cardiomyocyte-restricted, and studied the effects on cardiac function and structure. Loss of DNA repair permitted normal heart development but subsequently caused progressive deterioration of cardiac function, resulting in overt congestive heart failure and premature death within 6 months. Cardiac biopsies revealed increased oxidative stress associated with increased fibrosis and apoptosis. Moreover, gene set enrichment analysis showed enrichment of pathways associated with impaired DNA repair and apoptosis, and identified TP53 as one of the top active upstream transcription regulators. In support of the observed cardiac phenotype in mutant mice, several genetic variants in the <i>ERCC1</i> and <i>XPG</i> gene in human GWAS data were found to be associated with cardiac remodelling and dysfunction. In conclusion, unrepaired spontaneous DNA damage in differentiated cardiomyocytes drives early onset of cardiac failure. These observations implicate DNA damage as a potential novel therapeutic target and highlight systemic and cardiomyocyte-restricted DNA repair-deficient mouse mutants as <i>bona fide</i> models of heart failure.</p>","PeriodicalId":119,"journal":{"name":"Aging Cell","volume":"22 3","pages":""},"PeriodicalIF":8.0000,"publicationDate":"2023-02-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/acel.13768","citationCount":"4","resultStr":"{\"title\":\"DNA repair in cardiomyocytes is critical for maintaining cardiac function in mice\",\"authors\":\"Martine de Boer,&nbsp;Maaike te Lintel?Hekkert,&nbsp;Jiang Chang,&nbsp;Bibi S. van Thiel,&nbsp;Leonie Martens,&nbsp;Maxime M. Bos,&nbsp;Marion G. J. de Kleijnen,&nbsp;Yanto Ridwan,&nbsp;Yanti Octavia,&nbsp;Elza D. van Deel,&nbsp;Lau A. Blonden,&nbsp;Renata M. C. Brandt,&nbsp;Sander Barnhoorn,&nbsp;Paula K. Bautista-Ni?o,&nbsp;Ilona Krabbendam-Peters,&nbsp;Rianne Wolswinkel,&nbsp;Banafsheh Arshi,&nbsp;Mohsen Ghanbari,&nbsp;Christian Kupatt,&nbsp;Leon J. de Windt,&nbsp;A. H. Jan Danser,&nbsp;Ingrid van der Pluijm,&nbsp;Carol?Ann Remme,&nbsp;Monika Stoll,&nbsp;Joris Pothof,&nbsp;Anton J. M. Roks,&nbsp;Maryam Kavousi,&nbsp;Jeroen Essers,&nbsp;Jolanda van der Velden,&nbsp;Jan H. J. Hoeijmakers,&nbsp;Dirk J. Duncker\",\"doi\":\"10.1111/acel.13768\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Heart failure has reached epidemic proportions in a progressively ageing population. The molecular mechanisms underlying heart failure remain elusive, but evidence indicates that DNA damage is enhanced in failing hearts. Here, we tested the hypothesis that endogenous DNA repair in cardiomyocytes is critical for maintaining normal cardiac function, so that perturbed repair of spontaneous DNA damage drives early onset of heart failure. To increase the burden of spontaneous DNA damage, we knocked out the DNA repair endonucleases xeroderma pigmentosum complementation group G (XPG) and excision repair cross-complementation group 1 (ERCC1), either systemically or cardiomyocyte-restricted, and studied the effects on cardiac function and structure. Loss of DNA repair permitted normal heart development but subsequently caused progressive deterioration of cardiac function, resulting in overt congestive heart failure and premature death within 6 months. Cardiac biopsies revealed increased oxidative stress associated with increased fibrosis and apoptosis. Moreover, gene set enrichment analysis showed enrichment of pathways associated with impaired DNA repair and apoptosis, and identified TP53 as one of the top active upstream transcription regulators. In support of the observed cardiac phenotype in mutant mice, several genetic variants in the <i>ERCC1</i> and <i>XPG</i> gene in human GWAS data were found to be associated with cardiac remodelling and dysfunction. In conclusion, unrepaired spontaneous DNA damage in differentiated cardiomyocytes drives early onset of cardiac failure. These observations implicate DNA damage as a potential novel therapeutic target and highlight systemic and cardiomyocyte-restricted DNA repair-deficient mouse mutants as <i>bona fide</i> models of heart failure.</p>\",\"PeriodicalId\":119,\"journal\":{\"name\":\"Aging Cell\",\"volume\":\"22 3\",\"pages\":\"\"},\"PeriodicalIF\":8.0000,\"publicationDate\":\"2023-02-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1111/acel.13768\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Aging Cell\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/acel.13768\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Aging Cell","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/acel.13768","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 4

摘要

在逐渐老龄化的人口中,心力衰竭已达到流行病的程度。心力衰竭的分子机制仍然难以捉摸,但有证据表明,DNA损伤在心力衰竭中增强。在这里,我们测试了心肌细胞内源性DNA修复对维持正常心功能至关重要的假设,因此自发DNA损伤的修复受到干扰会导致心力衰竭的早期发作。为了增加自发性DNA损伤的负担,我们在系统或心肌细胞限制下敲除了DNA修复内切酶——着色性干皮病互补组G (XPG)和切除修复交叉互补组1 (ERCC1),并研究了它们对心脏功能和结构的影响。DNA修复的缺失允许心脏正常发育,但随后引起心功能的进行性恶化,导致明显的充血性心力衰竭和6个月内过早死亡。心脏活检显示氧化应激增加与纤维化和细胞凋亡增加有关。此外,基因集富集分析显示,与DNA修复受损和凋亡相关的通路富集,并确定TP53是上游活性转录调控因子之一。为了支持在突变小鼠中观察到的心脏表型,在人类GWAS数据中发现ERCC1和XPG基因的几个遗传变异与心脏重塑和功能障碍有关。总之,分化心肌细胞中未修复的自发DNA损伤驱动心力衰竭的早期发作。这些观察结果暗示DNA损伤是一个潜在的新治疗靶点,并强调全身和心肌细胞限制性DNA修复缺陷小鼠突变体是心力衰竭的真正模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

DNA repair in cardiomyocytes is critical for maintaining cardiac function in mice

DNA repair in cardiomyocytes is critical for maintaining cardiac function in mice

Heart failure has reached epidemic proportions in a progressively ageing population. The molecular mechanisms underlying heart failure remain elusive, but evidence indicates that DNA damage is enhanced in failing hearts. Here, we tested the hypothesis that endogenous DNA repair in cardiomyocytes is critical for maintaining normal cardiac function, so that perturbed repair of spontaneous DNA damage drives early onset of heart failure. To increase the burden of spontaneous DNA damage, we knocked out the DNA repair endonucleases xeroderma pigmentosum complementation group G (XPG) and excision repair cross-complementation group 1 (ERCC1), either systemically or cardiomyocyte-restricted, and studied the effects on cardiac function and structure. Loss of DNA repair permitted normal heart development but subsequently caused progressive deterioration of cardiac function, resulting in overt congestive heart failure and premature death within 6 months. Cardiac biopsies revealed increased oxidative stress associated with increased fibrosis and apoptosis. Moreover, gene set enrichment analysis showed enrichment of pathways associated with impaired DNA repair and apoptosis, and identified TP53 as one of the top active upstream transcription regulators. In support of the observed cardiac phenotype in mutant mice, several genetic variants in the ERCC1 and XPG gene in human GWAS data were found to be associated with cardiac remodelling and dysfunction. In conclusion, unrepaired spontaneous DNA damage in differentiated cardiomyocytes drives early onset of cardiac failure. These observations implicate DNA damage as a potential novel therapeutic target and highlight systemic and cardiomyocyte-restricted DNA repair-deficient mouse mutants as bona fide models of heart failure.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Aging Cell
Aging Cell Biochemistry, Genetics and Molecular Biology-Cell Biology
自引率
2.60%
发文量
212
期刊介绍: Aging Cell is an Open Access journal that focuses on the core aspects of the biology of aging, encompassing the entire spectrum of geroscience. The journal's content is dedicated to publishing research that uncovers the mechanisms behind the aging process and explores the connections between aging and various age-related diseases. This journal aims to provide a comprehensive understanding of the biological underpinnings of aging and its implications for human health. The journal is widely recognized and its content is abstracted and indexed by numerous databases and services, which facilitates its accessibility and impact in the scientific community. These include: Academic Search (EBSCO Publishing) Academic Search Alumni Edition (EBSCO Publishing) Academic Search Premier (EBSCO Publishing) Biological Science Database (ProQuest) CAS: Chemical Abstracts Service (ACS) Embase (Elsevier) InfoTrac (GALE Cengage) Ingenta Select ISI Alerting Services Journal Citation Reports/Science Edition (Clarivate Analytics) MEDLINE/PubMed (NLM) Natural Science Collection (ProQuest) PubMed Dietary Supplement Subset (NLM) Science Citation Index Expanded (Clarivate Analytics) SciTech Premium Collection (ProQuest) Web of Science (Clarivate Analytics) Being indexed in these databases ensures that the research published in Aging Cell is discoverable by researchers, clinicians, and other professionals interested in the field of aging and its associated health issues. This broad coverage helps to disseminate the journal's findings and contributes to the advancement of knowledge in geroscience.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信