变指数双相变分问题的ω-极小值的梯度估计

IF 0.6 4区 数学 Q3 MATHEMATICS
Sun-Sig Byun, Ho-Sik Lee
{"title":"变指数双相变分问题的ω-极小值的梯度估计","authors":"Sun-Sig Byun, Ho-Sik Lee","doi":"10.1093/QMATH/HAAA067","DOIUrl":null,"url":null,"abstract":"\n We are concerned with an optimal regularity for ω-minimizers to double phase variational problems with variable exponents where the associated energy density is allowed to be discontinuous. We identify basic structure assumptions on the density for the absence of Lavrentiev phenomenon and higher integrability. Moreover, we establish a local Calderón–Zygmund theory for such generalized minimizers under minimal regularity requirements regarding such double phase functionals to the frame of Lebesgue spaces with variable exponents.","PeriodicalId":54522,"journal":{"name":"Quarterly Journal of Mathematics","volume":null,"pages":null},"PeriodicalIF":0.6000,"publicationDate":"2021-01-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1093/QMATH/HAAA067","citationCount":"4","resultStr":"{\"title\":\"Gradient Estimates of ω-Minimizers to Double Phase Variational Problems with Variable Exponents\",\"authors\":\"Sun-Sig Byun, Ho-Sik Lee\",\"doi\":\"10.1093/QMATH/HAAA067\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n We are concerned with an optimal regularity for ω-minimizers to double phase variational problems with variable exponents where the associated energy density is allowed to be discontinuous. We identify basic structure assumptions on the density for the absence of Lavrentiev phenomenon and higher integrability. Moreover, we establish a local Calderón–Zygmund theory for such generalized minimizers under minimal regularity requirements regarding such double phase functionals to the frame of Lebesgue spaces with variable exponents.\",\"PeriodicalId\":54522,\"journal\":{\"name\":\"Quarterly Journal of Mathematics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2021-01-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1093/QMATH/HAAA067\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Quarterly Journal of Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1093/QMATH/HAAA067\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quarterly Journal of Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1093/QMATH/HAAA067","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 4

摘要

我们关注可变指数双相变分问题的ω最小值的最优正则性,其中相关能量密度允许不连续。在没有Lavrentiev现象和较高可积性的情况下,我们确定了密度的基本结构假设。此外,在变指数Lebesgue空间框架下,对于这类双相泛函,我们建立了在极小正则性要求下的广义极小解的局部Calderón-Zygmund理论。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Gradient Estimates of ω-Minimizers to Double Phase Variational Problems with Variable Exponents
We are concerned with an optimal regularity for ω-minimizers to double phase variational problems with variable exponents where the associated energy density is allowed to be discontinuous. We identify basic structure assumptions on the density for the absence of Lavrentiev phenomenon and higher integrability. Moreover, we establish a local Calderón–Zygmund theory for such generalized minimizers under minimal regularity requirements regarding such double phase functionals to the frame of Lebesgue spaces with variable exponents.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.30
自引率
0.00%
发文量
36
审稿时长
6-12 weeks
期刊介绍: The Quarterly Journal of Mathematics publishes original contributions to pure mathematics. All major areas of pure mathematics are represented on the editorial board.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信