{"title":"柔性通道流中撞击的低阶模型","authors":"F. Xu, O. Jensen","doi":"10.1093/QJMAM/HBV009","DOIUrl":null,"url":null,"abstract":"In simulations, large-amplitude self-excited oscillations of high-Reynolds-number flow in a finite-length flexible channel often exhibit vigorous repetitive ’slamming’ motion, during which the channel briefly becomes almost completely occluded over a very short lengthscale near its downstream end before rapidly reopening. Here we analyse this near-singular behaviour using an established one-dimensional PDE model of the two-dimensional physical system. Working in a distinguished asympotic limit, we systematically derive a low-order differential/algebraic model for the flow when it is close to the slamming state. The shape of the channel near the constriction is determined by a balance between membrane tension and fluid inertia; this region is also the predominant site of viscous dissipation, which balances energy changes distributed along the channel. The reduced model accurately captures a set of steady solution branches and their stability and shows how slamming is strongly coupled to the properties of the rigid channel downstream of the membrane. A singularity is identified in the low-order model which may explain the violent readjustment of the flow at the end of a slamming event.","PeriodicalId":56087,"journal":{"name":"Quarterly Journal of Mechanics and Applied Mathematics","volume":"68 1","pages":"299-319"},"PeriodicalIF":0.8000,"publicationDate":"2015-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1093/QJMAM/HBV009","citationCount":"6","resultStr":"{\"title\":\"A low-order model for slamming in a flexible-channel flow\",\"authors\":\"F. Xu, O. Jensen\",\"doi\":\"10.1093/QJMAM/HBV009\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In simulations, large-amplitude self-excited oscillations of high-Reynolds-number flow in a finite-length flexible channel often exhibit vigorous repetitive ’slamming’ motion, during which the channel briefly becomes almost completely occluded over a very short lengthscale near its downstream end before rapidly reopening. Here we analyse this near-singular behaviour using an established one-dimensional PDE model of the two-dimensional physical system. Working in a distinguished asympotic limit, we systematically derive a low-order differential/algebraic model for the flow when it is close to the slamming state. The shape of the channel near the constriction is determined by a balance between membrane tension and fluid inertia; this region is also the predominant site of viscous dissipation, which balances energy changes distributed along the channel. The reduced model accurately captures a set of steady solution branches and their stability and shows how slamming is strongly coupled to the properties of the rigid channel downstream of the membrane. A singularity is identified in the low-order model which may explain the violent readjustment of the flow at the end of a slamming event.\",\"PeriodicalId\":56087,\"journal\":{\"name\":\"Quarterly Journal of Mechanics and Applied Mathematics\",\"volume\":\"68 1\",\"pages\":\"299-319\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2015-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1093/QJMAM/HBV009\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Quarterly Journal of Mechanics and Applied Mathematics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1093/QJMAM/HBV009\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quarterly Journal of Mechanics and Applied Mathematics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1093/QJMAM/HBV009","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
A low-order model for slamming in a flexible-channel flow
In simulations, large-amplitude self-excited oscillations of high-Reynolds-number flow in a finite-length flexible channel often exhibit vigorous repetitive ’slamming’ motion, during which the channel briefly becomes almost completely occluded over a very short lengthscale near its downstream end before rapidly reopening. Here we analyse this near-singular behaviour using an established one-dimensional PDE model of the two-dimensional physical system. Working in a distinguished asympotic limit, we systematically derive a low-order differential/algebraic model for the flow when it is close to the slamming state. The shape of the channel near the constriction is determined by a balance between membrane tension and fluid inertia; this region is also the predominant site of viscous dissipation, which balances energy changes distributed along the channel. The reduced model accurately captures a set of steady solution branches and their stability and shows how slamming is strongly coupled to the properties of the rigid channel downstream of the membrane. A singularity is identified in the low-order model which may explain the violent readjustment of the flow at the end of a slamming event.
期刊介绍:
The Quarterly Journal of Mechanics and Applied Mathematics publishes original research articles on the application of mathematics to the field of mechanics interpreted in its widest sense. In addition to traditional areas, such as fluid and solid mechanics, the editors welcome submissions relating to any modern and emerging areas of applied mathematics.