S. J. Doyle, A. Mancini, M. Agredano-Torres, J. L. García-Sánchez, J. Segado-Fernandez, J. Ayllon-Guerola, M. Garcia-Muñoz, E. Viezzer, J. Garcia-Lopez, Y. Hwang, K. Chung
{"title":"SMART托卡马克的单零平衡和双零平衡","authors":"S. J. Doyle, A. Mancini, M. Agredano-Torres, J. L. García-Sánchez, J. Segado-Fernandez, J. Ayllon-Guerola, M. Garcia-Muñoz, E. Viezzer, J. Garcia-Lopez, Y. Hwang, K. Chung","doi":"10.1088/2516-1067/ac2a0e","DOIUrl":null,"url":null,"abstract":"The SMall Aspect Ratio Tokamak (SMART) device is a novel, compact (R geo = 0.42 m, a = 0.22 m, A ≥ 1.70) spherical tokamak, currently under development at the University of Seville. The SMART device is being developed over 3 phases, with target on-axis toroidal magnetic fields between 0.1 ≤ B ϕ ≤ 1.0 T, and target plasma currents of between 35 ≤ I p ≤ 400 kA; with phases 2 and 3 enabling access to a wide range of elongations (κ ≤ 2.30) and triangularities ( − 0.50 ≤ δ ≤ 0.50). SMART employs four internal divertor coils with two internal and two external poloidal field coils, enabling operation in lower-single, upper-single and double-null configurations. This work examines phase 3 of the SMART device, presenting a prospective L-mode discharge scenario without external heating, before examining five highly-shaped equilibria, including: two double null triangular configurations, two single null triangular configurations and a baseline double null configuration. All equilibria are obtained via an axisymmetric Grad-Shafranov force balance solver (Fiesta), in combination with a circuit equation rigid current displacement model (RZIp) to obtain time-resolved vessel and plasma currents.","PeriodicalId":36295,"journal":{"name":"Plasma Research Express","volume":"375 1","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Single and double null equilibria in the SMART Tokamak\",\"authors\":\"S. J. Doyle, A. Mancini, M. Agredano-Torres, J. L. García-Sánchez, J. Segado-Fernandez, J. Ayllon-Guerola, M. Garcia-Muñoz, E. Viezzer, J. Garcia-Lopez, Y. Hwang, K. Chung\",\"doi\":\"10.1088/2516-1067/ac2a0e\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The SMall Aspect Ratio Tokamak (SMART) device is a novel, compact (R geo = 0.42 m, a = 0.22 m, A ≥ 1.70) spherical tokamak, currently under development at the University of Seville. The SMART device is being developed over 3 phases, with target on-axis toroidal magnetic fields between 0.1 ≤ B ϕ ≤ 1.0 T, and target plasma currents of between 35 ≤ I p ≤ 400 kA; with phases 2 and 3 enabling access to a wide range of elongations (κ ≤ 2.30) and triangularities ( − 0.50 ≤ δ ≤ 0.50). SMART employs four internal divertor coils with two internal and two external poloidal field coils, enabling operation in lower-single, upper-single and double-null configurations. This work examines phase 3 of the SMART device, presenting a prospective L-mode discharge scenario without external heating, before examining five highly-shaped equilibria, including: two double null triangular configurations, two single null triangular configurations and a baseline double null configuration. All equilibria are obtained via an axisymmetric Grad-Shafranov force balance solver (Fiesta), in combination with a circuit equation rigid current displacement model (RZIp) to obtain time-resolved vessel and plasma currents.\",\"PeriodicalId\":36295,\"journal\":{\"name\":\"Plasma Research Express\",\"volume\":\"375 1\",\"pages\":\"\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Plasma Research Express\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1088/2516-1067/ac2a0e\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ORTHOPEDICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plasma Research Express","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/2516-1067/ac2a0e","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ORTHOPEDICS","Score":null,"Total":0}
引用次数: 2
摘要
小宽高比托卡马克(SMART)装置是一种新颖、紧凑(R geo = 0.42 m, a = 0.22 m, a≥1.70)的球形托卡马克,目前正在塞维利亚大学开发中。SMART器件分3个阶段开发,目标轴向环面磁场在0.1≤B φ≤1.0 T,目标等离子体电流在35≤I p≤400 kA;相位2和3可以获得大范围的伸长(κ≤2.30)和三角形(- 0.50≤δ≤0.50)。SMART采用四个内部分流器线圈,两个内部和两个外部极向磁场线圈,可在低单、高单和双零配置下运行。本研究考察了SMART装置的第三阶段,在考察五种高形状平衡(包括两个双零三角形配置、两个单零三角形配置和一个基线双零配置)之前,提出了一个没有外部加热的l模式放电场景。所有平衡都是通过轴对称的grada - shafranov力平衡求解器(Fiesta)获得的,结合电路方程刚性电流位移模型(RZIp)获得时间分辨的容器和等离子体电流。
Single and double null equilibria in the SMART Tokamak
The SMall Aspect Ratio Tokamak (SMART) device is a novel, compact (R geo = 0.42 m, a = 0.22 m, A ≥ 1.70) spherical tokamak, currently under development at the University of Seville. The SMART device is being developed over 3 phases, with target on-axis toroidal magnetic fields between 0.1 ≤ B ϕ ≤ 1.0 T, and target plasma currents of between 35 ≤ I p ≤ 400 kA; with phases 2 and 3 enabling access to a wide range of elongations (κ ≤ 2.30) and triangularities ( − 0.50 ≤ δ ≤ 0.50). SMART employs four internal divertor coils with two internal and two external poloidal field coils, enabling operation in lower-single, upper-single and double-null configurations. This work examines phase 3 of the SMART device, presenting a prospective L-mode discharge scenario without external heating, before examining five highly-shaped equilibria, including: two double null triangular configurations, two single null triangular configurations and a baseline double null configuration. All equilibria are obtained via an axisymmetric Grad-Shafranov force balance solver (Fiesta), in combination with a circuit equation rigid current displacement model (RZIp) to obtain time-resolved vessel and plasma currents.