流行病模型中的密度依赖动力学和重复感染。

J. Mena-Lorca, J. Velasco-Hernández, C. Castillo-Chavez
{"title":"流行病模型中的密度依赖动力学和重复感染。","authors":"J. Mena-Lorca, J. Velasco-Hernández, C. Castillo-Chavez","doi":"10.1093/IMAMMB/16.4.307","DOIUrl":null,"url":null,"abstract":"A mathematical model of the interaction between two pathogen strains and a single host population is studied. Variable population size, density-dependent mortality, disease-related deaths (virulence), and superinfection are incorporated into the model. Results indicate that coexistence of the two strains is possible depending on the magnitude of superinfection. Global asymptotic stability of the steady-state that gives coexistence for both strains under suitable and biologically feasible constraints is proved.","PeriodicalId":77168,"journal":{"name":"IMA journal of mathematics applied in medicine and biology","volume":"16 4 1","pages":"307-17"},"PeriodicalIF":0.0000,"publicationDate":"1999-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1093/IMAMMB/16.4.307","citationCount":"24","resultStr":"{\"title\":\"Density-dependent dynamics and superinfection in an epidemic model.\",\"authors\":\"J. Mena-Lorca, J. Velasco-Hernández, C. Castillo-Chavez\",\"doi\":\"10.1093/IMAMMB/16.4.307\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A mathematical model of the interaction between two pathogen strains and a single host population is studied. Variable population size, density-dependent mortality, disease-related deaths (virulence), and superinfection are incorporated into the model. Results indicate that coexistence of the two strains is possible depending on the magnitude of superinfection. Global asymptotic stability of the steady-state that gives coexistence for both strains under suitable and biologically feasible constraints is proved.\",\"PeriodicalId\":77168,\"journal\":{\"name\":\"IMA journal of mathematics applied in medicine and biology\",\"volume\":\"16 4 1\",\"pages\":\"307-17\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1999-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1093/IMAMMB/16.4.307\",\"citationCount\":\"24\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IMA journal of mathematics applied in medicine and biology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1093/IMAMMB/16.4.307\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IMA journal of mathematics applied in medicine and biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/IMAMMB/16.4.307","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 24

摘要

研究了两种病原菌株与单一宿主种群相互作用的数学模型。可变种群规模、密度依赖性死亡率、疾病相关死亡(毒力)和重复感染被纳入模型。结果表明,根据重复感染的程度,两种菌株可能共存。证明了在适宜约束和生物可行约束下两种菌株共存的稳态的全局渐近稳定性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Density-dependent dynamics and superinfection in an epidemic model.
A mathematical model of the interaction between two pathogen strains and a single host population is studied. Variable population size, density-dependent mortality, disease-related deaths (virulence), and superinfection are incorporated into the model. Results indicate that coexistence of the two strains is possible depending on the magnitude of superinfection. Global asymptotic stability of the steady-state that gives coexistence for both strains under suitable and biologically feasible constraints is proved.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信