病毒复制模型中的延迟效应。

Judy Tam
{"title":"病毒复制模型中的延迟效应。","authors":"Judy Tam","doi":"10.1093/IMAMMB/16.1.29","DOIUrl":null,"url":null,"abstract":"As biology becomes more quantitative, it appears that the increasing use of mathematics in this area is inevitable. In 1996, Nowak & Bangham (1996, Science 272, 74-79) proposed three mathematical models to explore the relation between antiviral immune responses, virus load, and virus diversity. In this paper we investigate the delay effect in a model which considers the interaction between a replicating virus and host cells. We assume that there is a finite time lag between infection of a cell and the emission of viral particles. Even with the introduction of this delay, the steady states of the model--as suggested by Nowak & Bangham--remain stable. The result also gives a condition for how the parameter values should be chosen when analysing clinical data so that the model remains tenable.","PeriodicalId":77168,"journal":{"name":"IMA journal of mathematics applied in medicine and biology","volume":"100 1","pages":"29-37"},"PeriodicalIF":0.0000,"publicationDate":"1999-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1093/IMAMMB/16.1.29","citationCount":"68","resultStr":"{\"title\":\"Delay effect in a model for virus replication.\",\"authors\":\"Judy Tam\",\"doi\":\"10.1093/IMAMMB/16.1.29\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"As biology becomes more quantitative, it appears that the increasing use of mathematics in this area is inevitable. In 1996, Nowak & Bangham (1996, Science 272, 74-79) proposed three mathematical models to explore the relation between antiviral immune responses, virus load, and virus diversity. In this paper we investigate the delay effect in a model which considers the interaction between a replicating virus and host cells. We assume that there is a finite time lag between infection of a cell and the emission of viral particles. Even with the introduction of this delay, the steady states of the model--as suggested by Nowak & Bangham--remain stable. The result also gives a condition for how the parameter values should be chosen when analysing clinical data so that the model remains tenable.\",\"PeriodicalId\":77168,\"journal\":{\"name\":\"IMA journal of mathematics applied in medicine and biology\",\"volume\":\"100 1\",\"pages\":\"29-37\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1999-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1093/IMAMMB/16.1.29\",\"citationCount\":\"68\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IMA journal of mathematics applied in medicine and biology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1093/IMAMMB/16.1.29\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IMA journal of mathematics applied in medicine and biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/IMAMMB/16.1.29","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 68

摘要

随着生物学变得更加量化,数学在这一领域的应用似乎越来越多是不可避免的。1996年,Nowak & Bangham (1996, Science 272, 74-79)提出了三个数学模型来探索抗病毒免疫反应、病毒载量和病毒多样性之间的关系。本文研究了一个考虑复制病毒与宿主细胞相互作用的模型中的延迟效应。我们假设在细胞感染和病毒粒子发射之间有一个有限的时间差。即使引入了这种延迟,模型的稳定状态——正如诺瓦克和班汉所建议的那样——仍然是稳定的。结果也给出了在分析临床数据时如何选择参数值的条件,以使模型保持成立。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Delay effect in a model for virus replication.
As biology becomes more quantitative, it appears that the increasing use of mathematics in this area is inevitable. In 1996, Nowak & Bangham (1996, Science 272, 74-79) proposed three mathematical models to explore the relation between antiviral immune responses, virus load, and virus diversity. In this paper we investigate the delay effect in a model which considers the interaction between a replicating virus and host cells. We assume that there is a finite time lag between infection of a cell and the emission of viral particles. Even with the introduction of this delay, the steady states of the model--as suggested by Nowak & Bangham--remain stable. The result also gives a condition for how the parameter values should be chosen when analysing clinical data so that the model remains tenable.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信