{"title":"双量子位系统的渐近锁相与同步","authors":"Daniel Štěrba, J. Novotny, I. Jex","doi":"10.1088/2399-6528/acc0d4","DOIUrl":null,"url":null,"abstract":"The paper concerns spontaneous asymptotic phase-locking and synchronization in two-qubit systems undergoing continuous Markovian evolution described by Lindbladian dynamics with normal Lindblad operators. Using analytic methods, all phase-locking-enforcing mechanisms within the given framework are obtained and classified. Detailed structures of their respective attractor spaces are provided and used to explore their properties from various perspectives. Amid phase-locking processes those additionally enforcing identical stationary parts of both qubits are identified, including as a special case the strictest form of synchronization conceivable. A prominent basis is presented which reveals that from a physical point of view two main types of phase-locking mechanisms exist. The ability to preserve information about the initial state is explored and an upper bound on the amplitude of oscillations of the resulting phase-locked dynamics is established. Permutation symmetry of both asymptotic states and phase-locking mechanisms is discussed. Lastly, the possibility of entanglement production playing the role of a phase-locking witness is rebutted by three analytically treatable examples.","PeriodicalId":47089,"journal":{"name":"Journal of Physics Communications","volume":"7 1","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2022-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Asymptotic phase-locking and synchronization in two-qubit systems\",\"authors\":\"Daniel Štěrba, J. Novotny, I. Jex\",\"doi\":\"10.1088/2399-6528/acc0d4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The paper concerns spontaneous asymptotic phase-locking and synchronization in two-qubit systems undergoing continuous Markovian evolution described by Lindbladian dynamics with normal Lindblad operators. Using analytic methods, all phase-locking-enforcing mechanisms within the given framework are obtained and classified. Detailed structures of their respective attractor spaces are provided and used to explore their properties from various perspectives. Amid phase-locking processes those additionally enforcing identical stationary parts of both qubits are identified, including as a special case the strictest form of synchronization conceivable. A prominent basis is presented which reveals that from a physical point of view two main types of phase-locking mechanisms exist. The ability to preserve information about the initial state is explored and an upper bound on the amplitude of oscillations of the resulting phase-locked dynamics is established. Permutation symmetry of both asymptotic states and phase-locking mechanisms is discussed. Lastly, the possibility of entanglement production playing the role of a phase-locking witness is rebutted by three analytically treatable examples.\",\"PeriodicalId\":47089,\"journal\":{\"name\":\"Journal of Physics Communications\",\"volume\":\"7 1\",\"pages\":\"\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2022-10-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Physics Communications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1088/2399-6528/acc0d4\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Physics Communications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/2399-6528/acc0d4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
Asymptotic phase-locking and synchronization in two-qubit systems
The paper concerns spontaneous asymptotic phase-locking and synchronization in two-qubit systems undergoing continuous Markovian evolution described by Lindbladian dynamics with normal Lindblad operators. Using analytic methods, all phase-locking-enforcing mechanisms within the given framework are obtained and classified. Detailed structures of their respective attractor spaces are provided and used to explore their properties from various perspectives. Amid phase-locking processes those additionally enforcing identical stationary parts of both qubits are identified, including as a special case the strictest form of synchronization conceivable. A prominent basis is presented which reveals that from a physical point of view two main types of phase-locking mechanisms exist. The ability to preserve information about the initial state is explored and an upper bound on the amplitude of oscillations of the resulting phase-locked dynamics is established. Permutation symmetry of both asymptotic states and phase-locking mechanisms is discussed. Lastly, the possibility of entanglement production playing the role of a phase-locking witness is rebutted by three analytically treatable examples.