具有振荡边界的一维腔中场模量子态的退相干和转移

V. Dodonov, M. A. Andreata, S. S. Mizrahi
{"title":"具有振荡边界的一维腔中场模量子态的退相干和转移","authors":"V. Dodonov, M. A. Andreata, S. S. Mizrahi","doi":"10.1088/1464-4266/7/12/006","DOIUrl":null,"url":null,"abstract":"We study the evolution of Wigner functions of arbitrary initial quantum states of field modes in a one-dimensional ideal cavity, whose boundary performs small harmonic oscillations at the frequency ωW = pω1 (where ω1 is the fundamental field eigenfrequency). Special attention is paid to the case of initial even and odd coherent states, which serve as models of the 'Schrodinger cat states'. We show that the strong intermode interaction (due to the Doppler upshift of the fields reflected from the oscillating mirror) results in the decoherence of initial quantum superpositions in selected modes, even in the absence of any external 'environment'. Different quantitative measures of decoherence are discussed. The analytical solutions obtained show that any initial state of the field goes asymptotically to a highly mixed and moderately squeezed state in the 'principal resonance case' p = 2 and to the vacuum state in the 'semiresonance case' p = 1. It is shown that the decoherence process has several stages. In the first one, the interference between the components of the initial superposition is rapidly destroyed during the time of the primary decoherence, which is inversely proportional to the first power of the initial distance between the components, as opposed to the second power in the case of usual dissipative reservoirs. However, some weak traces of coherence (quantumness of states), such as the regions of negativity of the Wigner function, survive for much longer times, which do not depend on the size of the initial superposition.","PeriodicalId":87441,"journal":{"name":"Journal of optics. B, Quantum and semiclassical optics : journal of the European Optical Society","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2005-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1088/1464-4266/7/12/006","citationCount":"11","resultStr":"{\"title\":\"Decoherence and transfer of quantum states of field modes in a one-dimensional cavity with an oscillating boundary\",\"authors\":\"V. Dodonov, M. A. Andreata, S. S. Mizrahi\",\"doi\":\"10.1088/1464-4266/7/12/006\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We study the evolution of Wigner functions of arbitrary initial quantum states of field modes in a one-dimensional ideal cavity, whose boundary performs small harmonic oscillations at the frequency ωW = pω1 (where ω1 is the fundamental field eigenfrequency). Special attention is paid to the case of initial even and odd coherent states, which serve as models of the 'Schrodinger cat states'. We show that the strong intermode interaction (due to the Doppler upshift of the fields reflected from the oscillating mirror) results in the decoherence of initial quantum superpositions in selected modes, even in the absence of any external 'environment'. Different quantitative measures of decoherence are discussed. The analytical solutions obtained show that any initial state of the field goes asymptotically to a highly mixed and moderately squeezed state in the 'principal resonance case' p = 2 and to the vacuum state in the 'semiresonance case' p = 1. It is shown that the decoherence process has several stages. In the first one, the interference between the components of the initial superposition is rapidly destroyed during the time of the primary decoherence, which is inversely proportional to the first power of the initial distance between the components, as opposed to the second power in the case of usual dissipative reservoirs. However, some weak traces of coherence (quantumness of states), such as the regions of negativity of the Wigner function, survive for much longer times, which do not depend on the size of the initial superposition.\",\"PeriodicalId\":87441,\"journal\":{\"name\":\"Journal of optics. B, Quantum and semiclassical optics : journal of the European Optical Society\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2005-11-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1088/1464-4266/7/12/006\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of optics. B, Quantum and semiclassical optics : journal of the European Optical Society\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1088/1464-4266/7/12/006\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of optics. B, Quantum and semiclassical optics : journal of the European Optical Society","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/1464-4266/7/12/006","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

摘要

本文研究了一维理想腔中场模任意初始量子态的Wigner函数的演化,其边界在频率为ωW = pω1(其中ω1为基本场本征频率)处进行小谐振荡。特别注意了初始偶态和奇态的情况,它们作为“薛定谔猫态”的模型。我们表明,强模间相互作用(由于振荡镜反射的场的多普勒上移)导致在所选模式下初始量子叠加的退相干,即使在没有任何外部“环境”的情况下也是如此。讨论了退相干的不同定量测量方法。得到的解析解表明,在“主共振情况”p = 2下,场的任何初始状态都渐近地趋于高度混合和适度压缩状态,而在“半共振情况”p = 1下,场的任何初始状态都渐近地趋于真空状态。结果表明,退相干过程分为几个阶段。在第一种情况下,初始叠加分量之间的干扰在初级退相干期间被迅速消除,这与分量之间初始距离的第一次方成反比,而不是通常耗散储层的第二次方。然而,一些微弱的相干痕迹(态的量子性),如维格纳函数的负区域,存在的时间要长得多,这与初始叠加的大小无关。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Decoherence and transfer of quantum states of field modes in a one-dimensional cavity with an oscillating boundary
We study the evolution of Wigner functions of arbitrary initial quantum states of field modes in a one-dimensional ideal cavity, whose boundary performs small harmonic oscillations at the frequency ωW = pω1 (where ω1 is the fundamental field eigenfrequency). Special attention is paid to the case of initial even and odd coherent states, which serve as models of the 'Schrodinger cat states'. We show that the strong intermode interaction (due to the Doppler upshift of the fields reflected from the oscillating mirror) results in the decoherence of initial quantum superpositions in selected modes, even in the absence of any external 'environment'. Different quantitative measures of decoherence are discussed. The analytical solutions obtained show that any initial state of the field goes asymptotically to a highly mixed and moderately squeezed state in the 'principal resonance case' p = 2 and to the vacuum state in the 'semiresonance case' p = 1. It is shown that the decoherence process has several stages. In the first one, the interference between the components of the initial superposition is rapidly destroyed during the time of the primary decoherence, which is inversely proportional to the first power of the initial distance between the components, as opposed to the second power in the case of usual dissipative reservoirs. However, some weak traces of coherence (quantumness of states), such as the regions of negativity of the Wigner function, survive for much longer times, which do not depend on the size of the initial superposition.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信