对北部湿地甲烷排放的动态研究

Q2 Agricultural and Biological Sciences
S. Nattrass
{"title":"对北部湿地甲烷排放的动态研究","authors":"S. Nattrass","doi":"10.1093/BIOHORIZONS/HZQ008","DOIUrl":null,"url":null,"abstract":"Methane is an important greenhouse gas, contributing 22% to the increased radiative forcing over 150 years, and emissions from wetlands are key to its global dynamics. A general model of methane dynamics is presented that emphasizes the impact of external climate factors on methane production and oxidation. The model consists of two uncoupled bacterial populations, each following a logistic growth pattern, and a third differential equation, dependent on these two populations, that represents the concentration of stored methane in wetland soils. This is related to methane emissions into the atmosphere. Several simplified models are also presented to demonstrate the development of the model from the basic processes occurring in the soil. Analysis of the model shows a stable equilibrium point for the methane concentration. This equilibrium is subject to short-term forcing by climate, specifically changes in temperature and water table depth. Parameters for this model are then fitted to real data taken from a wetland site in Teesdale, and this forcing is shown to account for much of the observed variation in methane emissions. An attempt to extend this model to longer time scales is made, by considering the average climate. This extension is shown to be unsuccessful through considering Taylor’s theorem and its implications for the model. Finally, a simplistic approximation to climate change is made, and the consequences of these changes on methane emissions predicted by the model are presented. These consequences are found to include negative feedback, where the change in climate eventually results in lower emissions of methane.","PeriodicalId":52095,"journal":{"name":"Bioscience Horizons","volume":"3 1","pages":"57-65"},"PeriodicalIF":0.0000,"publicationDate":"2010-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1093/BIOHORIZONS/HZQ008","citationCount":"0","resultStr":"{\"title\":\"A study of the dynamics behind methane emissions from northern wetlands\",\"authors\":\"S. Nattrass\",\"doi\":\"10.1093/BIOHORIZONS/HZQ008\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Methane is an important greenhouse gas, contributing 22% to the increased radiative forcing over 150 years, and emissions from wetlands are key to its global dynamics. A general model of methane dynamics is presented that emphasizes the impact of external climate factors on methane production and oxidation. The model consists of two uncoupled bacterial populations, each following a logistic growth pattern, and a third differential equation, dependent on these two populations, that represents the concentration of stored methane in wetland soils. This is related to methane emissions into the atmosphere. Several simplified models are also presented to demonstrate the development of the model from the basic processes occurring in the soil. Analysis of the model shows a stable equilibrium point for the methane concentration. This equilibrium is subject to short-term forcing by climate, specifically changes in temperature and water table depth. Parameters for this model are then fitted to real data taken from a wetland site in Teesdale, and this forcing is shown to account for much of the observed variation in methane emissions. An attempt to extend this model to longer time scales is made, by considering the average climate. This extension is shown to be unsuccessful through considering Taylor’s theorem and its implications for the model. Finally, a simplistic approximation to climate change is made, and the consequences of these changes on methane emissions predicted by the model are presented. These consequences are found to include negative feedback, where the change in climate eventually results in lower emissions of methane.\",\"PeriodicalId\":52095,\"journal\":{\"name\":\"Bioscience Horizons\",\"volume\":\"3 1\",\"pages\":\"57-65\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1093/BIOHORIZONS/HZQ008\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bioscience Horizons\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1093/BIOHORIZONS/HZQ008\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Agricultural and Biological Sciences\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioscience Horizons","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/BIOHORIZONS/HZQ008","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Agricultural and Biological Sciences","Score":null,"Total":0}
引用次数: 0

摘要

甲烷是一种重要的温室气体,对150年来增加的辐射强迫贡献了22%,而湿地的排放是其全球动态的关键。提出了一种强调外部气候因子对甲烷生成和氧化影响的甲烷动力学一般模型。该模型由两个不耦合的细菌种群组成,每个种群都遵循逻辑增长模式,第三个微分方程依赖于这两个种群,表示湿地土壤中储存的甲烷浓度。这与甲烷排放到大气中有关。本文还提出了几个简化模型,以说明该模型从土壤中发生的基本过程发展而来。模型分析表明甲烷浓度存在一个稳定的平衡点。这种平衡受到气候的短期强迫,特别是温度和地下水位的变化。然后将该模型的参数与从提斯代尔的一个湿地地点获取的真实数据进行拟合,这种强迫作用被证明可以解释观测到的甲烷排放的大部分变化。通过考虑平均气候,尝试将该模型扩展到更长的时间尺度。通过考虑泰勒定理及其对模型的影响,证明这种扩展是不成功的。最后,对气候变化做了一个简单的近似,并介绍了这些变化对模型预测的甲烷排放的影响。研究发现,这些后果包括负反馈,即气候变化最终导致甲烷排放量减少。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A study of the dynamics behind methane emissions from northern wetlands
Methane is an important greenhouse gas, contributing 22% to the increased radiative forcing over 150 years, and emissions from wetlands are key to its global dynamics. A general model of methane dynamics is presented that emphasizes the impact of external climate factors on methane production and oxidation. The model consists of two uncoupled bacterial populations, each following a logistic growth pattern, and a third differential equation, dependent on these two populations, that represents the concentration of stored methane in wetland soils. This is related to methane emissions into the atmosphere. Several simplified models are also presented to demonstrate the development of the model from the basic processes occurring in the soil. Analysis of the model shows a stable equilibrium point for the methane concentration. This equilibrium is subject to short-term forcing by climate, specifically changes in temperature and water table depth. Parameters for this model are then fitted to real data taken from a wetland site in Teesdale, and this forcing is shown to account for much of the observed variation in methane emissions. An attempt to extend this model to longer time scales is made, by considering the average climate. This extension is shown to be unsuccessful through considering Taylor’s theorem and its implications for the model. Finally, a simplistic approximation to climate change is made, and the consequences of these changes on methane emissions predicted by the model are presented. These consequences are found to include negative feedback, where the change in climate eventually results in lower emissions of methane.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Bioscience Horizons
Bioscience Horizons Agricultural and Biological Sciences-Agricultural and Biological Sciences (all)
CiteScore
1.50
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信