1和2属曲线雅可比矩阵束上的几何微分方程

Q2 Mathematics
E. Yu. Netaĭ
{"title":"1和2属曲线雅可比矩阵束上的几何微分方程","authors":"E. Yu. Netaĭ","doi":"10.1090/S0077-1554-2014-00223-5","DOIUrl":null,"url":null,"abstract":". We construct some differential equations describing the geometry of bundles of Jacobians of algebraic curves of genus 1 and 2. For an elliptic curve we produce differential equations on the coefficients of a cometric compatible with the Gauss–Manin connection of the universal bundle of Jacobians of elliptic curves. This cometric is defined in terms of a solution F of the linear system of differential equations","PeriodicalId":37924,"journal":{"name":"Transactions of the Moscow Mathematical Society","volume":"37 1","pages":"281-292"},"PeriodicalIF":0.0000,"publicationDate":"2014-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1090/S0077-1554-2014-00223-5","citationCount":"0","resultStr":"{\"title\":\"Geometric differential equations on bundles of Jacobians of curves of genus 1 and 2\",\"authors\":\"E. Yu. Netaĭ\",\"doi\":\"10.1090/S0077-1554-2014-00223-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\". We construct some differential equations describing the geometry of bundles of Jacobians of algebraic curves of genus 1 and 2. For an elliptic curve we produce differential equations on the coefficients of a cometric compatible with the Gauss–Manin connection of the universal bundle of Jacobians of elliptic curves. This cometric is defined in terms of a solution F of the linear system of differential equations\",\"PeriodicalId\":37924,\"journal\":{\"name\":\"Transactions of the Moscow Mathematical Society\",\"volume\":\"37 1\",\"pages\":\"281-292\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-04-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1090/S0077-1554-2014-00223-5\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Transactions of the Moscow Mathematical Society\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1090/S0077-1554-2014-00223-5\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transactions of the Moscow Mathematical Society","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1090/S0077-1554-2014-00223-5","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

摘要

. 构造了描述1和2属代数曲线雅可比矩阵束几何的微分方程。对于椭圆曲线,我们给出了与椭圆曲线雅可比矩阵泛束的高斯-曼宁连接相容的等距系数的微分方程。这个度量是用线性微分方程组的解F来定义的
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Geometric differential equations on bundles of Jacobians of curves of genus 1 and 2
. We construct some differential equations describing the geometry of bundles of Jacobians of algebraic curves of genus 1 and 2. For an elliptic curve we produce differential equations on the coefficients of a cometric compatible with the Gauss–Manin connection of the universal bundle of Jacobians of elliptic curves. This cometric is defined in terms of a solution F of the linear system of differential equations
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Transactions of the Moscow Mathematical Society
Transactions of the Moscow Mathematical Society Mathematics-Mathematics (miscellaneous)
自引率
0.00%
发文量
19
期刊介绍: This journal, a translation of Trudy Moskovskogo Matematicheskogo Obshchestva, contains the results of original research in pure mathematics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信