泊松几何中的同伦BV代数

Q2 Mathematics
Christopher Braun, A. Lazarev
{"title":"泊松几何中的同伦BV代数","authors":"Christopher Braun, A. Lazarev","doi":"10.1090/S0077-1554-2014-00216-8","DOIUrl":null,"url":null,"abstract":"We define and study the degeneration property for $ \\mathrm {BV}_\\infty $ algebras and show that it implies that the underlying $ L_{\\infty }$ algebras are homotopy abelian. The proof is based on a generalisation of the well-known identity $ \\Delta (e^{\\xi })=e^{\\xi }\\Big (\\Delta (\\xi )+\\frac {1}{2}[\\xi ,\\xi ]\\Big )$ which holds in all BV algebras. As an application we show that the higher Koszul brackets on the cohomology of a manifold supplied with a generalised Poisson structure all vanish. - See more at: http://www.ams.org/journals/mosc/2013-74-00/S0077-1554-2014-00216-8/#sthash.pBIIcZKa.dpuf","PeriodicalId":37924,"journal":{"name":"Transactions of the Moscow Mathematical Society","volume":"74 1","pages":"217-227"},"PeriodicalIF":0.0000,"publicationDate":"2013-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1090/S0077-1554-2014-00216-8","citationCount":"27","resultStr":"{\"title\":\"Homotopy BV algebras in Poisson geometry\",\"authors\":\"Christopher Braun, A. Lazarev\",\"doi\":\"10.1090/S0077-1554-2014-00216-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We define and study the degeneration property for $ \\\\mathrm {BV}_\\\\infty $ algebras and show that it implies that the underlying $ L_{\\\\infty }$ algebras are homotopy abelian. The proof is based on a generalisation of the well-known identity $ \\\\Delta (e^{\\\\xi })=e^{\\\\xi }\\\\Big (\\\\Delta (\\\\xi )+\\\\frac {1}{2}[\\\\xi ,\\\\xi ]\\\\Big )$ which holds in all BV algebras. As an application we show that the higher Koszul brackets on the cohomology of a manifold supplied with a generalised Poisson structure all vanish. - See more at: http://www.ams.org/journals/mosc/2013-74-00/S0077-1554-2014-00216-8/#sthash.pBIIcZKa.dpuf\",\"PeriodicalId\":37924,\"journal\":{\"name\":\"Transactions of the Moscow Mathematical Society\",\"volume\":\"74 1\",\"pages\":\"217-227\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-04-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1090/S0077-1554-2014-00216-8\",\"citationCount\":\"27\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Transactions of the Moscow Mathematical Society\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1090/S0077-1554-2014-00216-8\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transactions of the Moscow Mathematical Society","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1090/S0077-1554-2014-00216-8","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 27

摘要

我们定义并研究了$ \mathrm {BV}_\infty $代数的退化性质,并证明了其隐含的$ L_{\infty }$代数是同伦阿贝尔的。这个证明是基于一个众所周知的恒等式$ \Delta (e^{\xi })=e^{\xi }\Big (\Delta (\xi )+\frac {1}{2}[\xi ,\xi ]\Big )$的推广,它适用于所有的BV代数。作为一个应用,我们证明了具有广义泊松结构的流形上同调上的高Koszul括号全部消失。-详见:http://www.ams.org/journals/mosc/2013-74-00/S0077-1554-2014-00216-8/#sthash.pBIIcZKa.dpuf
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Homotopy BV algebras in Poisson geometry
We define and study the degeneration property for $ \mathrm {BV}_\infty $ algebras and show that it implies that the underlying $ L_{\infty }$ algebras are homotopy abelian. The proof is based on a generalisation of the well-known identity $ \Delta (e^{\xi })=e^{\xi }\Big (\Delta (\xi )+\frac {1}{2}[\xi ,\xi ]\Big )$ which holds in all BV algebras. As an application we show that the higher Koszul brackets on the cohomology of a manifold supplied with a generalised Poisson structure all vanish. - See more at: http://www.ams.org/journals/mosc/2013-74-00/S0077-1554-2014-00216-8/#sthash.pBIIcZKa.dpuf
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Transactions of the Moscow Mathematical Society
Transactions of the Moscow Mathematical Society Mathematics-Mathematics (miscellaneous)
自引率
0.00%
发文量
19
期刊介绍: This journal, a translation of Trudy Moskovskogo Matematicheskogo Obshchestva, contains the results of original research in pure mathematics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信