{"title":"在皮卡德势的两极上","authors":"A. Komlov","doi":"10.1090/S0077-1554-2010-00182-3","DOIUrl":null,"url":null,"abstract":"We study the existence of a global meromorphic fundamental system of solutions for a system of two differential equations Ex = (az + q(x))E, where a is a constant diagonal matrix, and q(x) is an off-diagonal meromorphic function, for each z ∈ C. Following Gesztesy and Weikard (1998), who investigated this property of functions q(x) and its connection to finite-gap solutions of soliton equations, we call such q(x) Picard potentials. We obtain conditions for the Picard property of various potentials q(x).","PeriodicalId":37924,"journal":{"name":"Transactions of the Moscow Mathematical Society","volume":"71 1","pages":"241-250"},"PeriodicalIF":0.0000,"publicationDate":"2010-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1090/S0077-1554-2010-00182-3","citationCount":"2","resultStr":"{\"title\":\"On the poles of Picard potentials\",\"authors\":\"A. Komlov\",\"doi\":\"10.1090/S0077-1554-2010-00182-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We study the existence of a global meromorphic fundamental system of solutions for a system of two differential equations Ex = (az + q(x))E, where a is a constant diagonal matrix, and q(x) is an off-diagonal meromorphic function, for each z ∈ C. Following Gesztesy and Weikard (1998), who investigated this property of functions q(x) and its connection to finite-gap solutions of soliton equations, we call such q(x) Picard potentials. We obtain conditions for the Picard property of various potentials q(x).\",\"PeriodicalId\":37924,\"journal\":{\"name\":\"Transactions of the Moscow Mathematical Society\",\"volume\":\"71 1\",\"pages\":\"241-250\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1090/S0077-1554-2010-00182-3\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Transactions of the Moscow Mathematical Society\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1090/S0077-1554-2010-00182-3\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transactions of the Moscow Mathematical Society","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1090/S0077-1554-2010-00182-3","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 2
摘要
我们研究了两个微分方程组Ex = (az + q(x))E的整体亚纯基本解系统的存在性,其中a是一个常数对角矩阵,q(x)是一个非对角亚纯函数,对于每个z∈c。继Gesztesy和Weikard(1998)研究了函数q(x)的这一性质及其与孤子方程有限间隙解的联系之后,我们称其为q(x) Picard势。我们得到了各种势q(x)的皮卡德性质的条件。
We study the existence of a global meromorphic fundamental system of solutions for a system of two differential equations Ex = (az + q(x))E, where a is a constant diagonal matrix, and q(x) is an off-diagonal meromorphic function, for each z ∈ C. Following Gesztesy and Weikard (1998), who investigated this property of functions q(x) and its connection to finite-gap solutions of soliton equations, we call such q(x) Picard potentials. We obtain conditions for the Picard property of various potentials q(x).