在皮卡德势的两极上

Q2 Mathematics
A. Komlov
{"title":"在皮卡德势的两极上","authors":"A. Komlov","doi":"10.1090/S0077-1554-2010-00182-3","DOIUrl":null,"url":null,"abstract":"We study the existence of a global meromorphic fundamental system of solutions for a system of two differential equations Ex = (az + q(x))E, where a is a constant diagonal matrix, and q(x) is an off-diagonal meromorphic function, for each z ∈ C. Following Gesztesy and Weikard (1998), who investigated this property of functions q(x) and its connection to finite-gap solutions of soliton equations, we call such q(x) Picard potentials. We obtain conditions for the Picard property of various potentials q(x).","PeriodicalId":37924,"journal":{"name":"Transactions of the Moscow Mathematical Society","volume":"71 1","pages":"241-250"},"PeriodicalIF":0.0000,"publicationDate":"2010-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1090/S0077-1554-2010-00182-3","citationCount":"2","resultStr":"{\"title\":\"On the poles of Picard potentials\",\"authors\":\"A. Komlov\",\"doi\":\"10.1090/S0077-1554-2010-00182-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We study the existence of a global meromorphic fundamental system of solutions for a system of two differential equations Ex = (az + q(x))E, where a is a constant diagonal matrix, and q(x) is an off-diagonal meromorphic function, for each z ∈ C. Following Gesztesy and Weikard (1998), who investigated this property of functions q(x) and its connection to finite-gap solutions of soliton equations, we call such q(x) Picard potentials. We obtain conditions for the Picard property of various potentials q(x).\",\"PeriodicalId\":37924,\"journal\":{\"name\":\"Transactions of the Moscow Mathematical Society\",\"volume\":\"71 1\",\"pages\":\"241-250\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1090/S0077-1554-2010-00182-3\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Transactions of the Moscow Mathematical Society\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1090/S0077-1554-2010-00182-3\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transactions of the Moscow Mathematical Society","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1090/S0077-1554-2010-00182-3","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 2

摘要

我们研究了两个微分方程组Ex = (az + q(x))E的整体亚纯基本解系统的存在性,其中a是一个常数对角矩阵,q(x)是一个非对角亚纯函数,对于每个z∈c。继Gesztesy和Weikard(1998)研究了函数q(x)的这一性质及其与孤子方程有限间隙解的联系之后,我们称其为q(x) Picard势。我们得到了各种势q(x)的皮卡德性质的条件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On the poles of Picard potentials
We study the existence of a global meromorphic fundamental system of solutions for a system of two differential equations Ex = (az + q(x))E, where a is a constant diagonal matrix, and q(x) is an off-diagonal meromorphic function, for each z ∈ C. Following Gesztesy and Weikard (1998), who investigated this property of functions q(x) and its connection to finite-gap solutions of soliton equations, we call such q(x) Picard potentials. We obtain conditions for the Picard property of various potentials q(x).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Transactions of the Moscow Mathematical Society
Transactions of the Moscow Mathematical Society Mathematics-Mathematics (miscellaneous)
自引率
0.00%
发文量
19
期刊介绍: This journal, a translation of Trudy Moskovskogo Matematicheskogo Obshchestva, contains the results of original research in pure mathematics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信