具有摄动中心的平面二次向量场的极限环数

Q2 Mathematics
Trudy Moskov, Matem, Obw, A. Y. Fishkin
{"title":"具有摄动中心的平面二次向量场的极限环数","authors":"Trudy Moskov, Matem, Obw, A. Y. Fishkin","doi":"10.1090/S0077-1554-2010-00181-1","DOIUrl":null,"url":null,"abstract":". We investigate the number of limit cycles of a planar quadratic vector field with a perturbed center-like singular point. An upper bound is obtained on the number of δ -good limit cycles of such a vector field (Theorem 1). Here δ is a parameter characterizing the limit cycles: it shows how far those cycles are from the singular points of the vector field and from the infinite points. The bound also includes another parameter, κ , characterizing the vector field. More precisely, κ gives an estimate on the distance from the vector field to the set consisting of quadratic vector fields with a line of singular points. Earlier, Ilyashenko and Llibre found a bound on the number of δ -good limit cycles of those vector fields which are sufficiently far from the fields with a center-like singular point. Theorem 1 and that bound complement each other and yield a new bound on the number of δ -good limit cycles of a quadratic vector field, regardless of its distance to the vector fields with a center-like singular point (Theorem 2).","PeriodicalId":37924,"journal":{"name":"Transactions of the Moscow Mathematical Society","volume":"71 1","pages":"105-139"},"PeriodicalIF":0.0000,"publicationDate":"2010-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1090/S0077-1554-2010-00181-1","citationCount":"0","resultStr":"{\"title\":\"On the number of limit cycles of planar quadratic vector fields with a perturbed center\",\"authors\":\"Trudy Moskov, Matem, Obw, A. Y. Fishkin\",\"doi\":\"10.1090/S0077-1554-2010-00181-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\". We investigate the number of limit cycles of a planar quadratic vector field with a perturbed center-like singular point. An upper bound is obtained on the number of δ -good limit cycles of such a vector field (Theorem 1). Here δ is a parameter characterizing the limit cycles: it shows how far those cycles are from the singular points of the vector field and from the infinite points. The bound also includes another parameter, κ , characterizing the vector field. More precisely, κ gives an estimate on the distance from the vector field to the set consisting of quadratic vector fields with a line of singular points. Earlier, Ilyashenko and Llibre found a bound on the number of δ -good limit cycles of those vector fields which are sufficiently far from the fields with a center-like singular point. Theorem 1 and that bound complement each other and yield a new bound on the number of δ -good limit cycles of a quadratic vector field, regardless of its distance to the vector fields with a center-like singular point (Theorem 2).\",\"PeriodicalId\":37924,\"journal\":{\"name\":\"Transactions of the Moscow Mathematical Society\",\"volume\":\"71 1\",\"pages\":\"105-139\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1090/S0077-1554-2010-00181-1\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Transactions of the Moscow Mathematical Society\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1090/S0077-1554-2010-00181-1\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transactions of the Moscow Mathematical Society","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1090/S0077-1554-2010-00181-1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

摘要

. 研究了一类具有摄动类中心奇点的平面二次向量场的极限环数。得到了这样一个向量场的δ -好极限环的个数的上界(定理1)。这里δ是表征极限环的一个参数:它表示这些环离向量场的奇点和无穷点有多远。该界还包括表征向量场的另一个参数κ。更准确地说,κ给出了从向量场到由奇异点组成的二次向量场集合的距离估计。在此之前,Ilyashenko和Llibre发现了距离类中心奇点场足够远的向量场的δ良好极限环数的一个界。定理1和该界相互补充,并得出二次向量场δ -良好极限环数的新界,而不管它与具有中心奇点的向量场的距离(定理2)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On the number of limit cycles of planar quadratic vector fields with a perturbed center
. We investigate the number of limit cycles of a planar quadratic vector field with a perturbed center-like singular point. An upper bound is obtained on the number of δ -good limit cycles of such a vector field (Theorem 1). Here δ is a parameter characterizing the limit cycles: it shows how far those cycles are from the singular points of the vector field and from the infinite points. The bound also includes another parameter, κ , characterizing the vector field. More precisely, κ gives an estimate on the distance from the vector field to the set consisting of quadratic vector fields with a line of singular points. Earlier, Ilyashenko and Llibre found a bound on the number of δ -good limit cycles of those vector fields which are sufficiently far from the fields with a center-like singular point. Theorem 1 and that bound complement each other and yield a new bound on the number of δ -good limit cycles of a quadratic vector field, regardless of its distance to the vector fields with a center-like singular point (Theorem 2).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Transactions of the Moscow Mathematical Society
Transactions of the Moscow Mathematical Society Mathematics-Mathematics (miscellaneous)
自引率
0.00%
发文量
19
期刊介绍: This journal, a translation of Trudy Moskovskogo Matematicheskogo Obshchestva, contains the results of original research in pure mathematics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信